Electronic Supplementary Information

g-C₃N₄-Based heterogeneous photocatalyst for visible light

mediated aerobic benzylic C-H oxygenations

Pengxin Geng,^{a,b} Yurong Tang,^b Guanglong Pan,^b Wentao Wang,^c Jinchuan Hu,^{*a} and Yunfei Cai ^{*b}

^aCollege of Chemisty, Chongqing Normal University, Chongqing 401331, P. R. China. E-mail: hujc20@139.com

^bSchool of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, 174 Shazheng Street, Chongqing 400030, P. R. China. E-mail: yf.cai@cqu.edu.cn

^cDalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China

Table of contents

1.	General information	S2
2.	Synthesis of various carbon nitride catalysts	S2
3.	Extra optimization of the reaction conditions	S4
4.	General procedures (GPs) for the g-C ₃ N ₄ photocatalyzed reactions	S5
5.	Characterization of the products 2a-s, 4a-l, 6a-e, 8 and 9	S8
6.	General procedure for the synthesis of corydaline 11	S19
7.	General procedure for the synthesis of Indoprofen 12a	S20
8.	General procedure for the synthesis of Indobufen 12b	S20
9.	References	S22
10.	¹ H NMR and ¹³ C NMR spectra of products	S23

1. General information

All chemical were obtained from commercial supplier and were used without further purification unless otherwise stated. All solvents were dried and distilled under argon prior to use. Solvents for chromatography were of technical grade and distilled prior to use. Glassware was pre-dried in an oven at 110 °C for several hours and cooled prior to use. Analytical thin layer chromatography was carried out using silica gel GF254, visualized under UV light (at 254 nm). Proton NMR (¹H) were recorded at 500 MHz, and Carbon NMR (¹³C) at 126 MHz NMR spectrometer. All the NMR spectra were processed in either MestReNova software. Chemical shifts (δ) are given in ppm. The XRD spectra was obtained with an X'Pert Pro MPD (Philips, Netherlands) X-ray diffraction spectrometer using Cu-Ka radiation ($\lambda = 1.79$ Å). FT-IR spectra were collected using a Nicolet IS10 FTIR spectrometer (Thermo Inc., America). Atomic force microscopy (AFM, NanoScope quadrex, Vecco Corporation American, Tapping Mode, pinpoint: TESP7 Vecco) was used to performed the characterization of g-C₃N₄.

2. Synthesis of various carbon nitride catalysts

The g-C₃N₄ photocatalyst was synthesized by the classic and facile method,¹ which consisted of directly heating melamine at different programmed temperatures in air. In detail, 4 g melamine was placed in a crucible with a cover, and heated to the desired temperature for 3 h at a heating rate of 3 °C min⁻¹. The resultant g-C₃N₄ samples were designated g-C₃N₄ (450 °C, g-C₃N₄ (500 °C), g-C₃N₄ (550 °C), g-C₃N₄ (600 °C) and g-C₃N₄ (650 °C), respectively, according to different polymerization temperatures of 450, 500, 550, 600 and 650 °C. For comparison, g-C₃N₄ was also prepared from other precursor by a similar procedure. 4 g urea (or dicyandiamide or guanidine hydrochloride) was placed in a crucible with a cover, and heated to 550 °C for 3 h at a heating rate of 3 °C min⁻¹ to obtain g-C₃N₄ (urea 550 °C) or (dicyandiamide 550 °C) or (guanidine hydrochloride 550 °C).

Synthesis of mpg-C₃N₄: mpg-C₃N₄ was prepared according to previously reported method.² In brief, cyanamide (3 g) was dissolved in 12.25 g 40% dispersion of 12-nm SiO₂ particles (Ludox HS40) in water with stirring at 333 K overnight. The resulting transparent mixtures were then heated at a rate of 2.3 K/min over 4 h to reach a temperature of 823 K and then tempered at this temperature for another 4 h. The resulting brown-yellow powder was treated with a 4.0 M NH₄HF₂ for 24 h to remove the silica template. The powders were then centrifuged and washed three times with distilled water and twice with ethanol. Finally the powders were dried at 343 K under vacuum for overnight. To prepare bulk g-C₃N₄, cyanamide was directly heated to 823 K and then temperature for another 4 h.

Fig. S1 (a) XRD patterns, (b) FT-IR spectra, (c) XPS survey, (d) N1s spectra, (e) C1s spectra, (f) SEM image of the $g-C_3N_4$ prepared by pyrolysis of melamine at 600 °C

The optimal g- C_3N_4 catalyst used in this work was characterized by XRD, XPS and SEM (Fig. S1).

3. Extra optimization of the reaction conditions

Table S1 Screening of carbon nitrides in the photo-oxidation of isochroman 1a to isochromanone $2a^{a}$

Ö

	$\begin{array}{c c} & & PC, O_2 \\ \hline H_2O, blue LEDs \\ 1a & & t, 24 h \\ \end{array} $	
entry	PC (precursor, temperature)	yield (%) ^b
1	mpg-C ₃ N ₄	59
2	g-C ₃ N ₄ (urea, 550 °C)	66
3	g-C ₃ N ₄ (dicyandiamide, 550 °C)	67
4	g-C ₃ N ₄ (guanidine hydrochloride, 550 °C)	67
5	g-C ₃ N ₄ (melamine, 450 °C)	59
6	g-C ₃ N ₄ (melamine, 500 °C)	68
7	g-C ₃ N ₄ (melamine, 550 °C)	68
8	g-C ₃ N ₄ (melamine, 600 °C)	77
9	g-C ₂ N ₄ (melamine, 650 °C)	77

^{*a*}Reaction conditions: **1a** (0.2 mmol), PC (10 mg), H₂O (2 mL), O₂ balloon, 6W blue LEDs, 24 h, rt. ^{*b*}Yields determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard.

Fig. S2 Effect of the light source on the $g-C_3N_4$ photocatalyzed aerobic oxidation of isochroman 1a

4. General procedures (GPs) for the g-C₃N₄ photocatalyzed reactions 4.1 GP1

A dry reaction tube was charged with g-C₃N₄ (10 mg). It was capped with a rubber septum, evacuated and backfilled with oxygen. Then, H₂O (2.0 mL) and substrate (0.2 mmol) were added via syringe. The solution was stirred at a distance of ~5 cm from a 6 W blue LEDs (465 nm) at room temperature for 24 h, with adequate fans to keep the reaction below 35 °C (Fig. S3). After complete consumption of the starting material (followed by TLC), the mixture was filtered to remove the g-C₃N₄. After removal of solvents, the crude product was purified via silica gel flash column chromatography (petroleum ether /ethyl acetate $5:1\sim10:1$). For comparison, two 34W Kessil PR160-456 lamp (40W, 25%) were used as alternative light sources (Fig. S4), similar yield of **2a** was obtained from substrate **1a**.

Fig. S3

4.2. GP2

A dry reaction tube was charged with solid substrate (0.2 mmol) and g-C₃N₄ (10 mg). It was capped with a rubber septum, evacuated and backfilled with oxygen. Then, dry DMSO (2.0 mL) were added via syringe. The solution was stirred at a distance of ~5 cm from a 6 W blue LEDs (465 nm) at room temperature for 24 h, with adequate fans to keep the reaction below 35 °C. After complete consumption of the starting material (followed by TLC), the mixture was filtered to remove the g-C₃N₄. The reaction mixture was diluted with ethyl acetate (5 mL), transferred to a 60-mL separatory funnel, and washed with water (3 × 5 ml), then dried over anhydrous Na₂SO₄. After removal of solvents, the crude product was purified via silica gel flash column chromatography (petroleum ether /ethyl acetate 5:1~10:1).

4.3. GP3

A dry reaction tube was charged with **5b** (0.2 mmol) and $g-C_3N_4$ (20 mg). It was capped with a rubber septum, evacuated and backfilled with oxygen. Then, dry 1,2-Dichloroethane (2.0 mL) were added via syringe. The solution was stirred at a distance of ~5 cm from a 6 W blue LEDs (465 nm) at room temperature for 24 h with adequate fans to keep the reaction below 35 °C. After complete consumption of the starting material (followed by TLC), the mixture was filtered to remove the g-C₃N₄.

After removal of solvents, the crude product was purified via silica gel flash column chromatography (petroleum ether /ethyl acetate 10:1).

4.4. GP4

A dry reaction tube was charged with **5d** (0.2 mmol) and g-C₃N₄ (20 mg). It was capped with a rubber septum, evacuated and backfilled with oxygen. Then, dry DMSO (2.0 mL) were added via syringe. The solution was stirred at a distance of ~5 cm from a 24 W violet LEDs (400 nm) at 50°C for 24 h. After complete consumption of the starting material (followed by TLC), the mixture was filtered to remove the g-C₃N₄. The reaction mixture was diluted with ethyl acetate (5 mL), transferred to a 60-mL separatory funnel, and washed with water (3 × 5 ml), then dried over anhydrous Na₂SO₄. After removal of solvents, the crude product was purified via silica gel flash column chromatography (petroleum ether /ethyl acetate 30:1).

4.5. GP5

A dry reaction tube was charged with substrate (0.2 mmol) and g-C₃N₄ (20 mg). It was capped with a rubber septum, evacuated and backfilled with oxygen. Then, dry DMSO (4.0 mL) were added via syringe. The solution was stirred at a distance of ~5 cm from a 24 W blue LEDs (465 nm) at room temperature for 8 h with adequate fans to keep the reaction below 35 °C. After complete consumption of the starting material (followed by TLC), the mixture was filtered to remove the g-C₃N₄. The reaction mixture was diluted with ethyl acetate (5 mL), transferred to a 60-mL separatory funnel, and washed with water (3 × 5 ml), then dried over anhydrous Na₂SO₄. After removal of solvents, the crude product was purified via silica gel flash column chromatography (petroleum ether /ethyl acetate 5:1).

4.6. GP6

A dry reaction tube was charged with substrate (0.2 mmol, 1 equiv.), K_2CO_3 (0.1 mmol, 0.5 equiv) and g-C₃N₄ (20 mg). It was capped with a rubber septum, evacuated and backfilled with oxygen. Then, dry DMSO (4.0 mL) were added via syringe. The solution was stirred at a distance of ~5 cm from a 6 W blue LEDs (465 nm) at room temperature for 24 h with adequate fans to keep the reaction below 35 °C. After complete consumption of the starting material (followed by TLC), the mixture was filtered to remove the g-C₃N₄. The reaction mixture was diluted with ethyl acetate (5 mL), transferred to a 60-mL separatory funnel, and washed with water (3 × 5 ml), then dried over anhydrous Na₂SO₄. After removal of solvents, the crude product was purified via silica gel flash column chromatography (petroleum ether /ethyl acetate 5:1).

4.7. GP7

A dry reaction tube was charged with ethylbenzene **5e** (0.2 mmol) and $g-C_3N_4$ (20 mg). It was capped with a rubber septum, evacuated and backfilled with oxygen. Then, d_6 -DMSO (2.0 mL) were added via syringe. The solution was stirred at a distance of ~5 cm from a 24 W violet LEDs (400 nm) at 50°C for 48 h. Yield of desired product

6e determined by 1 H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard.

4.8. Recycling test

A dry reaction tube was charged with g-C₃N₄ (10 mg). It was capped with a rubber septum, evacuated and backfilled with oxygen. Then, H₂O (2.0 mL) and **1a** (0.2 mmol, 1.0 equiv.) were added via syringe. The solution was stirred at a distance of ~5 cm from a 6 W blue LEDs (465 nm) at room temperature for 24 h with adequate fans to keep the reaction below 35 °C. After completion, the reaction mixture was centrifuged to separate g-C₃N₄ and the liquid mixture. The catalyst g-C₃N₄ was washed thoroughly with methyl alcohol (3 × 3 mL) and H₂O (5 × 3 mL) and reused in the subsequent recycling reaction. The combined liquid mixture was evapored and analyzed by crude ¹H NMR using 1,3,5-trimethoxybenzene (0.05 mmol) as an internal standard to determined the yield of **2a**.

4.9. Gram-scale synthesis of 2a

A dry reaction tube was charged with $g-C_3N_4$ (500 mg). It was capped with a rubber septum, evacuated and backfilled with oxygen. Then, H₂O (50 mL) and **1a** (10 mmol, 1.34 g) were added via syringe. The solution was stirred at a distance of ~5 cm from 4*6 W blue LEDs (465 nm) at room temperature for 48 h, with adequate fans to keep the reaction below 35 °C. After complete consumption of the starting material (followed by TLC), the mixture was filtered to remove the g-C₃N₄. The resulting mixture was extracted with ethyl acetate (3× 50 mL). The organic layer was dried over MgSO4. After removal of solvents, the crude product was purified via silica gel flash column chromatography (petroleum ether /ethyl acetate 5:1~10:1). The product **2a** was isolated as colorless oil (1.04 g, 70% yield).

5. Characterization of the products 2a-s, 4a-l, 6a-6d, 8 and 9. Isochroman-1-one (2a):

According to **GP1** starting from **1a** (0.2 mmol), the product **2a** was isolated after flash chromatography (petroleum ether/ethyl acetate 8:1), colorless liquid; 77% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, J = 7.8 Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.27 (d, J = 7.6 Hz, 1H), 4.54 (t, J = 5.9 Hz, 2H), 3.07 (t, J = 5.9 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 165.20, 139.62, 133.73, 130.37, 127.70, 127.31, 125.31, 67.36, 27.83. Data are consistent with those reported in the literature.³

7-Methylisochroman-1-one (2b):

According to **GP1** starting from **1b** (0.2 mmol), the product **2b** was isolated after flash chromatography (petroleum ether/ethyl acetate 5:1), white solid; 72% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.92 (s, 1H), 7.35 (d, J = 7.6 Hz, 1H), 7.16 (d, J = 7.7 Hz, 1H), 4.52 (t, J = 6.0 Hz, 2H), 3.02 (t, J = 5.9 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.45, 137.60, 136.61, 134.58, 130.65, 127.15, 125.08, 67.47, 27.49, 21.03. Data are consistent with those reported in the literature.³

7-(Tert-butyl)isochroman-1-one (2c):

According to **GP1** starting from **1c** (0.2 mmol), the product **2c** was isolated after flash chromatography (petroleum ether/ethyl acetate 5:1), yellow solid, 74% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.12 (s, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.21 (d, *J* = 8.0 Hz, 1H), 4.52 (t, *J* = 6.0 Hz, 2H), 3.03 (t, *J* = 5.9 Hz, 2H), 1.34 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 165.64, 151.00, 136.68, 131.04, 127.08, 127.06, 124.85, 67.42, 34.77, 31.21, 27.43. Data are consistent with those reported in the literature.⁴

1-Oxoisochroman-7-yl acetate (2d):

According to **GP2** starting from **1d** (0.2 mmol), the product **2d** was isolated after flash chromatography (petroleum ether/ethyl acetate 4:1), white solid, 69% yield; ¹H

NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 1.2 Hz, 1H), 7.32 – 7.27 (m, 2H), 4.55 (t, J = 6.0 Hz, 2H), 3.06 (t, J = 6.0 Hz, 2H), 2.32 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 169.31, 164.28, 149.95, 137.05, 128.53, 127.35, 126.53, 123.32, 67.40, 27.33, 21.02. Data are consistent with those reported in the literature.³

6,7-Dimethoxyisochroman-1-one (2e):

According to **GP2** starting from **1e** (0.2 mmol), the product **2e** was isolated after flash chromatography (petroleum ether/ethyl acetate 3:1), white solid, 58% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.56 (s, 1H), 6.69 (s, 1H), 4.52 (t, *J* = 6.0 Hz, 2H), 3.95 (s, 3H), 3.93 (s, 3H), 2.99 (t, *J* = 5.9 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 165.24, 153.67, 148.53, 134.00, 117.45, 111.87, 109.16, 67.40, 56.21, 27.52. Data are consistent with those reported in the literature.⁵

7-Fluoroisochroman-1-one (2f):

According to **GP1** starting from **1f** (0.2 mmol), the product **2f** was isolated after flash chromatography (petroleum ether/ethyl acetate 8:1), white solid, 74% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 8.4 Hz, 1H), 7.26 (d, J = 5.5 Hz, 2H), 4.55 (t, J = 5.9 Hz, 2H), 3.05 (t, J = 5.9 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 164.09, 161.88 (d, J_{C-F} = 247.1 Hz), 135.31 (d, J_{C-F} = 3.2 Hz), 129.11 (d, J_{C-F} = 7.4 Hz), 127.01 (d, J_{C-F} = 7.7 Hz), 121.11 (d, J_{C-F} = 22.0 Hz), 116.82 (d, J_{C-F} = 23.1 Hz), 67.50, 27.17. Data are consistent with those reported in the literature.³

7-Chloroisochroman-1-one (2g):

According to **GP1** starting from **1g** (0.2 mmol), the product **2g** was isolated after flash chromatography (petroleum ether/ethyl acetate 5:1), white solid, 71% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, J = 1.8 Hz, 1H), 7.51 (dd, J = 8.1, 2.0 Hz, 1H), 7.23 (d, J = 8.1 Hz, 1H), 4.54 (t, J = 6.0 Hz, 2H), 3.05 (t, J = 5.9 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 163.93, 137.79, 133.75, 130.23, 128.78, 126.79, 67.30, 27.31. Data are consistent with those reported in the literature.³

7-Bromoisochroman-1-one (2h):

According to **GP1** starting from **1h** (0.2 mmol), the product **2h** was isolated after flash chromatography (petroleum ether/ethyl acetate 5:1), white solid, 77% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.23 (s, 1H), 7.66 (dd, J = 8.1, 1.9 Hz, 1H), 7.17 (d, J = 8.1 Hz, 1H), 4.54 (t, J = 6.0 Hz, 2H), 3.03 (t, J = 5.9 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 163.79, 138.28, 136.62, 133.18, 129.01, 127.02, 121.40, 67.25, 27.38. Data are consistent with those reported in the literature.⁶

6-Bromoisochroman-1-one (2i):

According to **GP1** starting from **1i** (0.2 mmol), the product **2i** was isolated after flash chromatography (petroleum ether/ethyl acetate 5:1), white solid, 74% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, J = 8.3 Hz, 1H), 7.54 (d, J = 8.3 Hz, 1H), 7.46 (s, 1H), 4.54 (t, J = 6.0 Hz, 2H), 3.06 (t, J = 5.9 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 164.42, 141.27, 132.05, 131.23, 130.38, 128.80, 124.22, 67.14, 27.64. Data are consistent with those reported in the literature.⁷

8-Bromoisochroman-1-one (2j):

According to **GP1** starting from **1j** (0.2 mmol), the product **2j** was isolated after flash chromatography (petroleum ether/ethyl acetate 5:1), white solid, 75% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, J = 8.0 Hz, 1H), 7.32 (t, J = 7.8 Hz, 1H), 7.23 (d, J = 7.5 Hz, 1H), 4.47 (t, J = 5.8 Hz, 2H), 3.08 (t, J = 5.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 161.96, 142.62, 134.64, 133.43, 126.60, 124.80, 100.00, 66.55, 29.31. Data are consistent with those reported in the literature.

1,2-Dihydro-4H-benzo[f]isochromen-4-one (2k):

According to **GP2** starting from **1k** (0.2 mmol), the product **2k** was isolated after flash chromatography (petroleum ether/ethyl acetate 5:1), white solid, 80% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.12 (d, J = 8.6 Hz, 1H), 8.03 (d, J = 7.4 Hz, 1H), 7.91 (d,

J = 7.0 Hz, 1H), 7.84 (d, J = 8.6 Hz, 1H), 7.67 – 7.61 (m, 2H), 4.68 (t, J = 6.1 Hz, 2H), 3.45 (t, J = 6.1 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 165.54, 138.57, 135.66, 129.88, 128.93, 128.72, 127.81, 127.26, 125.23, 124.42, 122.50, 66.72, 24.23. Data are consistent with those reported in the literature.⁸

4,5-Dihydro-7H-thieno[2,3-c]pyran-7-one (2l):

According to **GP1** starting from **11** (0.2 mmol), the product **21** was isolated after flash chromatography (petroleum ether/ethyl acetate 5:1), yellow solid, 30% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, J = 5.0 Hz, 1H), 7.01 (d, J = 4.9 Hz, 1H), 4.59 (t, J = 6.2 Hz, 2H), 3.02 (t, J = 6.2 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 161.21, 147.47, 134.45, 126.78, 126.57, 68.40, 25.14. Data are consistent with those reported in the literature.³

6,7-Dihydro-4H-thieno[3,2-c]pyran-4-one (2m):

According to **GP1** starting from **1m** (0.2 mmol), the product **2m** was isolated after flash chromatography (petroleum ether/ethyl acetate 5:1), yellow solid, 47% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, J = 5.2 Hz, 1H), 7.17 (d, J = 5.2 Hz, 1H), 4.60 (t, J = 6.1 Hz, 2H), 3.16 (t, J = 6.1 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 161.27, 148.96, 128.17, 126.96, 124.02, 67.73, 24.65. HRMS (ESI⁺): m/z calcd for C₇H₆O₂S [M + Na]⁺ 176.9981, found 176.9980.

4-Methylisochroman-1-one (2n):

According to **GP1** starting from **1n** (0.2 mmol), the product **2n** was isolated after flash chromatography (petroleum ether/ethyl acetate 5:1), colorless liquid, 75% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, J = 7.8 Hz, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 7.31 (d, J = 7.7 Hz, 1H), 4.52 (dd, J = 10.9, 4.0 Hz, 1H), 4.25 (dd, J = 10.9, 6.7 Hz, 1H), 3.22 – 3.13 (m, 1H), 1.38 (d, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.17, 144.59, 133.93, 130.52, 127.57, 125.71, 124.43, 72.49, 31.78, 16.71. Data are consistent with those reported in the literature.³

3-Methylisochroman-1-one (20):

According to **GP1** starting from **10** (0.2 mmol), the product **20** was isolated after flash chromatography (petroleum ether/ethyl acetate 5:1), colorless liquid, 70% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, J = 7.7 Hz, 1H), 7.53 (t, J = 7.1 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.24 (d, J = 7.5 Hz, 1H), 4.74 – 4.63 (m, 1H), 3.02 – 2.89 (m, 2H), 1.53 (d, J = 6.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.64, 139.13, 133.70, 130.31, 127.67, 127.33, 125.04, 75.10, 34.92, 20.95. Data are consistent with those reported in the literature.³

Isobenzofuran-1(3H)-one (2p):

According to **GP1** starting from **1p** (0.2 mmol), the product **2p** was isolated after flash chromatography (petroleum ether/ethyl acetate 8:1), colorless liquid, 71% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, J = 7.6 Hz, 1H), 7.70 (t, J = 7.5 Hz, 1H), 7.55 (t, J = 7.5 Hz, 1H), 7.51 (d, J = 7.7 Hz, 1H), 5.34 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 171.14, 146.56, 134.05, 129.08, 125.81, 125.78, 122.14, 69.69. Data are consistent with those reported in the literature.³

6-Methylisobenzofuran-1(3H)-one/5-Methylisobenzofuran-1(3H)-one (2q):

According to GP1 starting from 1q (0.2 mmol), the product 2q was isolated after chromatography (petroleum ether/ethyl flash acetate 5:1), 6-Methylisobenzofuran-1(3H)-one: colorless liquid, 43% yield (1:1.15); ¹H NMR (500 MHz, CDCl₃) δ 7.71 (s, 1H), 7.50 (d, *J* = 7.8 Hz, 1H), 7.38 (d, *J* = 7.8 Hz, 1H), 5.28 (s, 2H), 2.47 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.32, 143.92, 139.30, 135.23, 125.91, 125.72, 121.81, 69.63, 21.27. Data are consistent with those reported in the literature.⁷ 5-Methylisobenzofuran-1(3H)-one: colorless liquid, 52% yield (1:1.15); ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, J = 7.8 Hz, 1H), 7.34 (d, J = 7.8 Hz, 1H), 7.29 (s, 1H), 5.27 (s, 2H), 2.50 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.22, 147.16, 145.30, 130.23, 125.50, 123.20, 122.41, 69.45, 22.07. Data are consistent with those reported in the literature.⁹

6-Bromoisobenzofuran-1(3H)-one/5-Bromoisobenzofuran-1(3H)-one (2r):

According to **GP1** starting from **1r** (0.2 mmol), the product **2r** was isolated after flash chromatography (petroleum ether/ethyl acetate 10:1), **6-Bromoisobenzofuran-1(3H)-one**: white solid, 39% yield, (**1**:1.34) ¹H NMR (500 MHz, CDCl₃) δ 8.05 (s, 1H), 7.80 (d, J = 9.4 Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 5.29 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 169.51, 145.16, 137.14, 128.80, 127.88, 123.75, 123.06, 69.55. Data are consistent with those Reported in the literature.¹ **5-Bromoisobenzofuran-1(3H)-one** white solid, 52% yield (1:**1.34**); ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 8.5 Hz, 1H), 7.69 (d, J = 3.9 Hz, 2H), 5.31 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 170.05, 148.27, 132.77, 129.34, 127.10, 125.64, 124.80, 68.94. Data are consistent with those reported in the literature.³

7-Chloroisobenzofuran-1(3H)-one/4-Chloroisobenzofuran-1(3H)-one (2s):

According to **GP1** starting from **1s** (0.2 mmol), the product **2s** was isolated after flash chromatography (petroleum ether/ethyl acetate 5:1), **7-Chloroisobenzofuran-1(3H)-one**: white solid, 40% yield (1:1.35); ¹H NMR (500 MHz, CDCl₃) δ 7.61 (t, J = 7.7 Hz, 1H), 7.49 (d, J = 7.9 Hz, 1H), 7.40 (d, J = 7.6 Hz, 1H), 5.28 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 167.96, 148.90, 135.03, 133.58, 130.52, 122.55, 120.54, 68.32. Data are consistent with those reported in the literature.⁸ **4-Chloroisobenzofuran-1(3H)-one**: white solid, 54% yield (1:1.35); ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, J = 7.6 Hz, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.53 (t, J = 7.7 Hz, 1H), 5.31 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 169.97, 144.55, 133.93, 130.85, 128.80, 128.00, 124.16, 68.64. Data are consistent with those reported in the literature.¹⁰

Tert-butyl 1-oxo-3,4-dihydroisoquinoline-2(1H)-carboxylate (4a):

According to **GP5** starting from **3a** (0.2 mmol), the product **4a** was isolated after flash chromatography (dichloromethane/ethyl acetate 40:1), white solid, 64% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.16 (d, *J* = 7.8 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.21 (d, *J* = 7.5 Hz, 1H), 4.03 – 3.95 (m, 2H), 3.01 (t, *J* = 6.1 Hz, 2H), 1.59 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 164.00, 153.21, 139.58, 132.88, 129.68,

129.41, 127.26, 127.19, 83.27, 44.47, 28.38, 28.15. Data are consistent with those reported in the literature.¹⁵

Benzyl 1-oxo-3,4-dihydroisoquinoline-2(1H)-carboxylate (4b):

According to **GP5** starting from **3b** (0.2 mmol), the product **4b** was isolated after flash chromatography (dichloromethane/ethyl acetate 80:1), white solid, 70% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.18 (d, J = 7.7 Hz, 1H), 7.48 (t, J = 7.7 Hz, 3H), 7.40 – 7.32 (m, 4H), 7.22 (d, J = 7.5 Hz, 1H), 5.36 (s, 2H), 4.12 – 4.05 (m, 2H), 3.01 (t, J = 6.1 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 163.79, 154.55, 139.60, 135.48, 133.19, 129.82, 129.07, 128.65, 128.35, 128.13, 127.40, 127.31, 68.80, 44.83, 28.30. Data are consistent with those Reported in the literature.¹⁵

2-Acetyl-3,4-dihydroisoquinolin-1(2H)-one (4c):

According to **GP5** starting from **3c** (0.2 mmol), the product **4c** was isolated after flash chromatography (petroleum ether/ethyl acetate 5:1), white solid, 41% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.15 (d, *J* = 7.8 Hz, 1H), 7.52 (t, *J* = 7.5 Hz, 1H), 7.40 (t, *J* = 7.5 Hz, 1H), 7.26 (d, *J* = 8.1 Hz, 1H), 4.12 (t, *J* = 6.3 Hz, 2H), 3.00 (t, *J* = 6.2 Hz, 2H), 2.67 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 173.82, 165.81, 140.30, 133.44, 129.57, 129.06, 127.40, 41.77, 28.18, 27.68. Data are consistent with those reported in the literature.¹⁵

2-Benzoyl-3,4-dihydroisoquinolin-1(2H)-one (4d):

According to **GP5** starting from **3d** (0.2 mmol), the product **4d** was isolated after flash chromatography (petroleum ether/ethyl acetate 5:1), white solid, 60% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, J = 7.8 Hz, 1H), 7.63 (d, J = 7.2 Hz, 2H), 7.54 (t, J = 7.5 Hz, 2H), 7.50 (d, J = 7.4 Hz, 0H), 7.44 – 7.34 (m, 3H), 7.32 (d, J = 7.6 Hz, 1H), 4.14 (t, J = 6.2 Hz, 2H), 3.19 (t, J = 6.1 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 140.20, 136.28, 133.69, 131.72, 129.77, 128.25, 128.18, 127.72, 127.47, 44.35, 28.54. Data are consistent with those Reported in the literature.¹⁵

2-Phenyl-3,4-dihydroisoquinolin-1(2H)-one (4e):

According to **GP6** starting from **3e** (0.2 mmol), the product **4e** was isolated after flash chromatography (petroleum ether/ethyl acetate 5:1), white solid, 73% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.16 (d, J = 7.7 Hz, 1H), 7.46 (t, J = 8.0 Hz, 6H), 7.43 – 7.34 (m, 3H), 7.24 (t, J = 7.7 Hz, 2H), 3.98 (t, J = 6.5 Hz, 2H), 3.13 (t, J = 6.4 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 164.25, 143.16, 138.37, 132.09, 129.77, 128.96, 128.78, 127.24, 127.01, 126.29, 125.37, 49.46, 28.67. Data are consistent with those reported in the literature.¹⁵

Benzyl 7-bromo-1-oxo-3,4-dihydroisoquinoline-2(1H)-carboxylate (4f):

According to **GP5** starting from **3f** (0.2 mmol), the product **4f** was isolated after flash chromatography (dichloromethane/ethyl acetate 80:1), white solid, 60% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.30 (s, 1H), 7.59 (d, J = 8.1 Hz, 1H), 7.48 (d, J = 7.3 Hz, 2H), 7.39 (t, J = 7.3 Hz, 2H), 7.34 (t, J = 7.2 Hz, 1H), 7.11 (d, J = 8.1 Hz, 1H), 5.36 (s, 2H), 4.07 (t, J = 6.2 Hz, 2H), 2.96 (t, J = 6.1 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 162.45, 154.28, 138.31, 136.03, 135.29, 132.55, 130.77, 129.05, 128.67, 128.42, 128.13, 121.24, 99.99, 68.97, 44.60, 27.81. HR-MS (ESI⁺): m/z calcd for C₁₇H₁₄BrNO₃ [M + Na]⁺ 382.0049, found 382.0048.

Benzyl 6,7-dimethoxy-1-oxo-3,4-dihydroisoquinoline-2(1H)-carboxylate (4g):

According to **GP5** starting from **3g** (0.2 mmol), the product **4g** was isolated after flash chromatography (dichloromethane/ethyl acetate 80:1), white solid, 68% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.65 (s, 1H), 7.49 (d, J = 7.2 Hz, 2H), 7.39 (t, J = 7.4 Hz, 2H), 7.33 (t, J = 7.3 Hz, 1H), 6.64 (s, 1H), 5.36 (s, 2H), 4.08 (t, J = 6.2 Hz, 2H), 3.93 (s, 3H), 3.92 (s, 6H), 2.95 (t, J = 6.1 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 172.92, 163.65, 154.73, 153.24, 148.35, 135.56, 134.04, 128.63, 128.29, 128.08, 121.40, 111.37, 109.20, 85.32, 68.71, 56.16, 56.15, 45.06, 28.02. HRMS (ESI⁺): *m/z* calcd for C₁₉H₁₉NO₅ [M + Na]⁺ 364.1155, found 364.1155.

2-Phenylisoindolin-1-one (4h):

According to **GP6** starting from **3h** (0.2 mmol), the product **4h** was isolated after flash chromatography (petroleum ether/ethyl acetate 5:1), yellow solid, 59% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, J = 7.5 Hz, 1H), 7.86 (d, J = 7.9 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H), 7.41 (t, J = 7.9 Hz, 2H), 7.17 (t, J = 7.4 Hz, 1H), 4.82 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 167.55, 140.16, 139.53, 133.26, 132.11, 129.18, 128.40, 124.50, 124.16, 122.66, 119.49, 50.75. Data are consistent with those reported in the literature.¹⁶

Tert-butyl 1-oxoisoindoline-2-carboxylate (4i):

According to **GP6** starting from **3i** (0.2 mmol), the product **4i** was isolated after flash chromatography (petroleum ether/ethyl acetate 5:1), yellow solid, 54% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, J = 7.6 Hz, 1H), 7.63 (t, J = 7.1 Hz, 1H), 7.49 (t, J = 9.0 Hz, 2H), 4.76 (s, 2H), 1.61 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 166.69, 150.46, 140.70, 133.54, 131.50, 128.52, 125.03, 123.06, 83.18, 49.17, 28.17. Data are consistent with those reported in the literature.¹⁶

2-(p-Tolyl)isoindolin-1-one (4j):

According to **GP6** starting from **3j** (0.2 mmol), the product **4j** was isolated after flash chromatography (petroleum ether/ethyl acetate 5:1), yellow solid, 68% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, *J* = 7.6 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.51 – 7.44 (m, 2H), 7.20 (d, *J* = 8.2 Hz, 2H), 4.78 (s, 2H), 2.33 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.42, 140.20, 136.98, 134.20, 133.35, 131.94, 129.69, 128.33, 124.06, 122.62, 119.61, 50.88, 20.89. Data are consistent with those reported in the literature.¹⁶

2-(4-Methoxyphenyl)isoindolin-1-one (4k):

According to GP6 starting from 3k (0.2 mmol), the product 4k was isolated after

flash chromatography (petroleum ether/ethyl acetate 5:1), yellow solid, 72% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, *J* = 7.6 Hz, 1H), 7.73 (d, *J* = 9.1 Hz, 2H), 7.57 (t, *J* = 7.0 Hz, 1H), 7.53 – 7.45 (m, 2H), 6.95 (d, *J* = 9.0 Hz, 2H), 4.79 (s, 2H), 3.82 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.29, 156.65, 140.18, 133.31, 132.67, 131.84, 128.34, 124.04, 122.60, 121.52, 114.36, 55.53, 51.20. Data are consistent with those reported in the literature.¹⁶

2-(4-Chlorophenyl)isoindolin-1-one (4l):

According to **GP6** starting from **31** (0.2 mmol), the product **41** was isolated after flash chromatography (petroleum ether/ethyl acetate 5:1), yellow solid, 63% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, *J* = 7.5 Hz, 1H), 7.81 (d, *J* = 9.0 Hz, 2H), 7.59 (t, *J* = 7.0 Hz, 1H), 7.49 (d, *J* = 6.9 Hz, 2H), 7.35 (d, *J* = 9.0 Hz, 2H), 4.79 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 167.54, 139.91, 138.12, 132.91, 132.34, 129.52, 129.16, 128.53, 124.20, 122.68, 120.39, 50.65. Data are consistent with those reported in the literature.¹⁶

9H-xanthen-9-one (6a):

According to **GP1** starting from **5a** (0.2 mmol), the product **6a** was isolated after flash chromatography (petroleum ether/ethyl acetate 8:1), white solid, 80% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.34 (d, *J* = 7.9 Hz, 2H), 7.72 (t, *J* = 8.5 Hz, 2H), 7.49 (d, *J* = 8.4 Hz, 2H), 7.38 (t, *J* = 7.5 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 177.27, 156.21, 134.85, 126.77, 123.94, 121.88, 118.01. Data are consistent with those reported in the literature.¹¹

9H-fluoren-9-one (6b):

According to **GP1** starting from **5b** (0.2 mmol), the product **6b** was isolated after flash chromatography (petroleum ether/ethyl acetate 20:1), white solid, 62% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, J = 7.3 Hz, 2H), 7.48 (dt, J = 14.6, 7.2 Hz, 4H), 7.28 (t, J = 7.3 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 193.96, 144.46, 134.72, 134.17, 129.10, 124.34, 120.34. Data are consistent with those reported in the literature.¹¹

9H-thioxanthen-9-one (6c):

According to **GP3** starting from **5c** (0.2 mmol), the product **6c** was isolated after flash chromatography (petroleum ether/ethyl acetate 8:1), white solid, 56% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.61 (d, J = 8.1 Hz, 2H), 7.60 (t, J = 7.5 Hz, 2H), 7.55 (d, J = 7.9 Hz, 2H), 7.47 (t, J = 7.5 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 179.97, 137.30, 132.28, 129.88, 129.25, 126.32, 126.00. Data are consistent with those reported in the literature.¹²

Benzophenone (6d):

According to **GP4** starting from **5d** (0.2 mmol), the product **6d** was isolated after flash chromatography (petroleum ether/ethyl acetate 30:1), white solid, 54% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, J = 7.7 Hz, 4H), 7.58 (t, J = 7.4 Hz, 2H), 7.47 (t, J = 7.6 Hz, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 196.79, 137.64, 132.46, 130.10, 128.32. Data are consistent with those reported in the literature.¹³

Acetophenone (6e):

According to **GP7** starting from **5e** (0.2 mmol), the product **6e** determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard, 28% yield; ¹H NMR (500 MHz, DMSO) δ 7.95 (d, J = 7.2 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.52 (t, J = 7.7 Hz, 2H), 2.51 (s, 3H).

Methyl 4-methoxybenzoate (8):

According to **GP1** starting from 7 (0.2 mmol), the product **8** was isolated after flash chromatography (petroleum ether/ethyl acetate 20:1), white solid, 68% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.00 (d, J = 9.0 Hz, 2H), 6.92 (d, J = 9.0 Hz, 2H), 3.89 (s, 3H), 3.86 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.89, 163.36, 131.61, 122.66, 113.63, 55.43, 51.85. Data are consistent with those reported in the literature.¹⁴

4-Methoxybenzoic acid (9):

According to **GP1** starting from 7 (0.2 mmol), the product **9** was isolated after flash chromatography (petroleum ether/ethyl acetate 1:1), yellow solid, 23% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.07 (d, J = 8.9 Hz, 2H), 6.95 (d, J = 8.9 Hz, 2H), 3.88 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.29, 163.04, 131.34, 120.67, 112.75, 54.47. Data are consistent with those reported in the literature.¹⁴

6. General procedure for the synthesis of corydaline 11.

Tert-butyl 6,7-dimethoxy-1-oxo-3,4-dihydroisoquinoline-2(1H)-carboxylate (4m): According to GP5 starting from 3m (0.2 mmol), the product 4m was isolated after flash chromatography (dichloromethane/ethyl acetate 40:1), yellow solid, 58% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.65 (s, 1H), 6.64 (s, 1H), 3.98 (t, *J* = 6.0 Hz, 2H), 3.93 (s, 3H), 3.91 (s, 3H), 2.94 (t, *J* = 5.8 Hz, 2H), 1.59 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 163.91, 153.50, 152.98, 148.24, 133.93, 121.73, 111.30, 109.14, 83.07, 56.12, 56.09, 44.71, 28.16, 28.06. Data are consistent with those reported in the literature.¹⁶

6,7-Dimethoxy-3,4-dihydroisoquinolin-1(2H)-one (11): The **4m** (22.2 mg, 0.07 mmol) was dissolved in anhydrous CH₂Cl₂ (5 mL) in a 25-mL, round-bottomed flask. TFA (10.4 μ L, 0.14 mmol, 2.0 equiv) was then added slowly and cautiously to the reaction solution at room temperature. After complete addition, the reaction was stirred at room temperature. After 1 h, the reaction mixture was diluted with CH₂Cl₂ (3 mL), transferred to a 60-mL separatory funnel, and washed with water (3 mL), 10% aq. Na₂CO₃ solution (3 mL), and brine (3 mL), then dried over anhydrous Na₂SO₄, decanted. After removal of solvents, the crude product was purified via silica gel flash column chromatography (ethyl acetate 100%), yellow solid, 95% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.57 (s, 1H), 6.68 (s, 1H), 6.44 (s, 1H), 3.93 (s, 6H), 3.56 (s, 2H), 2.93 (t, *J* = 6.5 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 166.55, 152.22, 148.08, 132.67, 121.39, 110.20, 109.61, 56.14, 56.07, 40.50, 28.03. Data are consistent with those reported in the literature.

7. General procedure for the synthesis of Indoprofen 12a.

Synthesis of ethyl 2-(4-(1-oxoisoindolin-2-yl)phenyl)propanoate (4n):

According to **GP6** starting from **3n** (0.2 mmol), the product **4n** was isolated after flash chromatography (petroleum ether/ethyl acetate 5:1), yellow solid, 65% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, J = 7.5 Hz, 1H), 7.82 (d, J = 8.5 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.9 Hz, 2H), 7.37 (d, J = 8.6 Hz, 2H), 4.85 (s, 2H), 4.21 – 4.06 (m, 2H), 3.72 (q, J = 7.1 Hz, 1H), 1.51 (d, J = 7.2 Hz, 4H), 1.22 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 174.53, 167.52, 140.13, 138.44, 136.82, 133.20, 132.12, 128.44, 128.27, 124.19, 122.66, 119.69, 60.84, 50.77, 45.04, 18.58, 14.17. Data are consistent with those reported in the literature.¹⁷

Synthesis of 2-(4-(1-oxoisoindolin-2-yl)phenyl)propanoic acid (12a):

Ethyl 2-(4-(1-oxoisoindolin-2-yl)phenyl)propanoate **4n** (10 mg, 0.03 mmol) was dissolved in MeOH (1 mL) and 2 M NaOH(aq) (1 mL) was added. THF was added until reaction mixture was clear. Reaction mixture was stirred at room temperature and followed by TLC. After reaction was completed, the mixture was acidified using 3 M HCl. Product was extracted with ethyl acetate and the combined EtOAc fractions were washed with brine and dried over MgSO₄. Solvent was removed and 9.3 mg of yellow solid of indoprofen **12a** was obtained, 98% yield; ¹H NMR (500 MHz, DMSO) δ 12.37 (s, 1H), 7.91 (d, *J* = 8.4 Hz, 2H), 7.84 (d, *J* = 7.5 Hz, 1H), 7.73 (d, *J* = 5.7 Hz, 2H), 7.60 (t, *J* = 6.7 Hz, 1H), 7.41 (d, *J* = 8.4 Hz, 2H), 5.07 (s, 2H), 3.74 (q, *J* = 7.0 Hz, 1H), 1.43 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, DMSO) δ 175.33, 166.52, 141.00, 138.12, 137.00, 132.41, 132.19, 128.16, 127.91, 123.31, 123.18, 119.44, 50.42, 44.08, 18.45. Data are consistent with those reported in the literature.¹⁷

8. General procedure for the synthesis of Indobufen 12b.

Ethyl 2-(4-(1-oxoisoindolin-2-yl)phenyl)butanoate (40):

According to **GP6** starting from **30** (0.2 mmol), the product **40** was isolated after flash chromatography (petroleum ether/ethyl acetate 5:1), yellow solid, 63% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, J = 7.5 Hz, 0H), 7.82 (d, J = 8.5 Hz, 1H), 7.60 (t, J = 7.4 Hz, 0H), 7.51 (t, J = 7.9 Hz, 1H), 7.38 (d, J = 8.5 Hz, 1H), 4.85 (s, 2H), 4.19 – 4.07 (m, 2H), 3.45 (t, J = 7.7 Hz, 1H), 2.10 (td, J = 14.7, 7.5 Hz, 1H), 1.86 – 1.75 (m, 1H), 1.23 (t, J = 7.1 Hz, 2H), 0.91 (t, J = 7.4 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 174.06, 167.51, 140.12, 138.50, 135.37, 133.22, 132.11, 128.74, 128.43, 124.19, 122.65, 119.59, 60.72, 53.00, 50.76, 26.78, 14.21, 12.18. Data are consistent with those reported in the literature.¹⁷

2-(4-(1-Oxoisoindolin-2-yl)phenyl)butanoic acid (12b):

Ethyl 2-(4-(1-oxoisoindolin-2-yl)phenyl)propanoate **40** (12 mg, 0.03 mmol) was dissolved in MeOH (1 mL) and 2 M NaOH(aq) (1 mL) was added. THF was added until reaction mixture was clear. Reaction mixture was stirred at RT and followed by TLC. After reaction was completed, the mixture was acidified using 3 M HCl. Product was extracted with ethyl acetate and the combined EtOAc fractions were washed with brine and dried over MgSO₄. Solvent was removed and 11.2 mg of yellow solid of **12b** was obtained, 98% yield; ¹H NMR (500 MHz, DMSO) δ 12.30 (s, 1H), 7.91 (d, *J* = 8.5 Hz, 2H), 7.83 (d, *J* = 7.5 Hz, 1H), 7.76 – 7.70 (m, 2H), 7.60 (t, *J* = 5.8 Hz, 1H), 7.40 (d, *J* = 8.5 Hz, 2H), 5.07 (s, 2H), 3.48 (t, *J* = 7.6 Hz, 1H), 2.04 (dd, *J* = 13.6, 7.2 Hz, 1H), 1.78 – 1.69 (m, 1H), 0.89 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (126 MHz, DMSO) δ 174.79, 166.54, 141.00, 138.23, 135.40, 132.41, 132.19, 128.30, 128.16, 123.31, 123.19, 119.36, 52.00, 50.40, 26.08, 12.01. Data are consistent with those reported in the literature.¹⁷

9. References

- 1. S. C. Yan, Z. S. Li and Z. G. Zou, Langmuir, 2009, 25, 10397-10401.
- 2. X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu and M. Antonietti, *J. Am. Chem. Soc.*, 2009, **131**, 1680–1681.
- A. Gonzalez-de-Castro, C. M. Robertson and J. Xiao, J. Am. Chem. Soc., 2014, 136, 8350–8360.
- 4. Z. Zhang, Y. Gao, Y. Liu, J. Li, H. Xie, H. Li and W. Wang, Org. Lett., 2015, 17, 5492–5495.
- 5. A.-R. Song, J. Yu and C. Zhang, Synthesis, 2012, 44, 2903–2909.
- 6. H. Yanai and T. Taguchi, Chem. Commun., 2012, 48, 8967-8969.
- A. Rioz Martínez, G. de Gonzalo, D. E. T. Pazmiño, M. W. Fraaije, and V. Gotor, *Eur. J. Org. Chem.*, 2009, 15, 2526–2532.
- 8. R. Audebert, J. Neel. Bulletin de la Societe Chimique de France[M]. 1985.
- 9. T. Fukuyama, T. Bando and I. Ryu, Synthesis, 2018, 50, 3015–3021.
- 10. C. Soucy, D. Favreau and M. Kayser, J. Org. Chem., 1987, 52, 129-134.
- 11. D. Riemer, B. Mandaviya, W. Schilling, A. C. Götz, T. Kühl, M. Finger and S. Das, *ACS Catal.*, 2018, **8**, 3030–3034.
- X. Tian, F. Ren, B. Zhao, Y.-L. Ren, S. Zhao and J. Wang, *Catal. Commun.*, 2018, 106, 44–49.
- C, Liu, G. Li, S. Shi, G. Meng, R. Lalancette, R. Szostak and M. Szostak, ACS Catal., 2018, 8, 9131–9139.
- 14. L. C. Finney, L. J. Mitchell and C. J. Moody, Green Chem., 2018, 20, 2242-2249.
- 15. K. C. C. Aganda, B. Hong and A. Lee, Adv. Synth. Catal., 2018, 361, 1124–1129.
- 16. J. W. Park and Y. K. Chung, ACS Catal., 2015, 5, 4846–4850.
- 17. T. Thatikonda, S. K. Deepake and U. Das, Org. Lett., 2019, 21, 2532-2535.

10. ¹H NMR and ¹³C NMR spectra of products

- €230 1670 1666 1650 179 179 179

€ 8040 € 8028 8016

000 🗊 - ----

₹ 4.550 4.538 4.527 € 3.068 3.056 3.044 -----0.000

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

000 🗑 ----

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

8.614 8.598 7.612 7.557 7.582 7.582 7.582 7.582 7.582 7.480 7.480 7.485

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40

