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Figure S1. 1H NMR spectra of the crude reaction mixture of the monomer synthesis, using (A) 
EtOH, (B) PrOH, and (C) 2-PrOH as the solvents. The marked signals (a and b) were due to 
side reactions, which were not observed in (C).

Figure S2. 1H NMR spectra of the crude reaction mixture after (A) being quenched with NaHCO3 
and vacuum-dried, and (B) vacuum-dried without base-quenching. 
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Monomer synthesis using fructose-based HMF

Fructose-based HMF was synthesized by dehydration of fructose in DMSO. Visual inspection 
of the samples showed that the fructose-based HMF showed a darker colour than the commercial 
HMF (Fig. S23). According to 1H NMR spectroscopical analyses (Fig. S24), the fructose-based 
HMF contained small amount of impurities (marked by red arrows). Furthermore, LC-MS results 
revealed that the purity of the fructose-based HMF 88%, while the purity for the commercial 
HMF was >95%. Finally, the fructose-based HMF was subjected to the synthesis of Monomer S 
according to the optimized experimental procedure. After the reaction, the crude reaction mixture 
was dried and subjected to 1H NMR analyses (Fig. S25). The conversion of HMF was calculated 
according to the NMR integrals (Fig. S25). As a result, the HMF conversion by using fructose-
based HMF was ~70%, which was slightly lower than the conversion for the monomer synthesis 
using commercial HMF-C (~75%). 

Figure S3. 1H NMR-spectra of (A) commercial HMF and (B) fructose-based HMF. The red 
arrows pointed at some minor impurity peaks in (B).
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Figure S4. 1H NMR-spectra of the crude reaction mixture using (A) commercial HMF and (B) 
fructose-based HMF. The conversion was calculated according to the integrals of the aldehyde 
proton of HMF (α) and the furan proton of Monomer S (β).

Figure S5. PHST-19 synthesized (A) with the solvents (xylene and mesitylene) under nitrogen, 
and (B) under vacuum condition without solvent. 
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Figure S6. (A) Polymerization of PHST-19 with antioxidant TNPP under vacuum condition. (B) 
the vacuum outlet blocked by the foams formed in the polymerization.

Figure S7. Possible thermal degradation of Monomer S to form HMF and polyols, leading to 
subsequent branching or crosslinking.
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(A) (B)

Figure S8. (A) An on-going polycondensation reaction with the vacuum outlet highlighted by the 
green circle, (B) the vacuum outlet after the polycondensation. The yellow arrow pointed at the 
yellow solid formed inside the vacuum outlet, which was collected and measured by 1H NMR 
analysis (Figure S4).
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Figure S9. 1H NMR-spectrum of the yellow solid collected from vacuum outlet after the 
polymerization. 

Figure S10. 1H NMR spectrum of PHST-18 (expanded from 5.0 to 3.0 ppm)
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Figure S11. 1H NMR spectrum of Monomer S.

Figure S12. 13C NMR spectrum of Monomer S.
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Figure S13. COSY spectrum of Monomer S.

Figure S14. HMQC spectrum of Monomer S.
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Figure S15. HMBC spectrum of Monomer S.

Figure S16. NOESY spectrum of Monomer S.
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Figure S19. COSY spectrum of PHT.

Figure S20. HMQC spectrum of PHT.
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Figure S21. HMBC spectrum of PHT.

Figure S22. 1H NMR spectrum of PHST-19.



S14

Figure S23. 13C NMR spectrum of PHST-19.

Figure S24. COSY spectrum of PHST-19.
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Figure S25. HMQC spectrum of PHST-19.

Figure S26. HMBC spectrum of PHST-19.
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Figure S27. (A) TGA thermograms, and (B) derivative curves of PHST-19gel and PHST-19.

Figure S28. DMA results, including the (A) storage modulus, (B) loss modulus and (C) tan δ for 
the synthesized (PHT and PHSTs) and a commercial polyester (Akestra 90).
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Figure S29. Blow-up of the 1H NMR spectra of PHST-16. (A) Before rheological measurement, 
(B) after time-sweep rheology measurement 170 °C, and (C) after time-sweep rheology 
measurement at 200 °C.

Figure S30. 1H NMR spectrum of PU.
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Figure S31. COSY spectrum of PU.

Figure S32. 13C NMR spectrum of PU.
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Figure S33. HMQC spectrum of PU.

Figure S34. HMBC spectrum of PU.
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Figure S35. 1H NMR spectrum of PSU-5.

Figure S36. COSY spectrum of PSU-5.
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Figure S37. 13C NMR spectrum of PSU-5.

Figure S38. HMQC spectrum of PSU-5.
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Figure S39. HMBC spectrum of PSU-5.

Figure S40.  1H NMR spectrum of PSU-10.
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Figure S41. COSY spectrum of PSU-10.

Figure S42. 13C NMR spectrum of PSU-10.
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Figure S43. HMQC spectrum of PSU-10.

Figure S44. HMBC spectrum of PSU-10.
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Figure S45. 1H NMR spectrum of PSU-18.

Figure S46. COSY spectrum of PSU-18.
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Figure S47. 13C NMR spectrum of PSU-18.

Figure S48. HMQC spectrum of PSU-18.
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Figure S49. HMBC spectrum of PSU-18

Figure S50. 1H NMR spectrum of PSU-43.
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Figure S51. 13C NMR spectrum of PSU-43.

PPM (F2) 7.0 6.0 5.0 4.0 3.0 2.0 1.0

PPM (F1)
7.6
7.2
6.8
6.4
6.0
5.6
5.2
4.8
4.4
4.0
3.6
3.2
2.8
2.4
2.0
1.6
1.2
0.8
0.4
0.0

SpinWorks 4: 50mg/ml

file: ...ktop\NMRspectra\NWB068-40fin\3\ser
expt: <cosygpppqf>
transmitter freq: 400.131801 MHz
time domain size: 2048 by 128 points
width (F2): 3597.12 Hz = 8.9898 ppm = 1.7564 Hz/pt
number of scans: 1

F2: freq. of 0 ppm: 400.1300000 MHz
processed size: 1024 complex points
window function: Sine Squared
shift: 0.0 degrees

F1: freq. of 0 ppm: 400.1300000 MHz
processed size: 1024 complex points
window function: Sine Squared
shift: 0.0 degrees

Figure S52. COSY spectrum of PSU-43.
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Figure S53. HMQC spectrum of PSU-43.

Figure S54. HMBC spectrum of PSU-43
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Figure S55. 1H NMR spectrum of PSU-62.

Figure S56. 13C NMR spectrum of PSU-62.
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Figure S57. COSY spectrum of PSU-62.

Figure S58. HMQC spectrum of PSU-62.
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Figure S59. HMBC spectrum of PSU-62.
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Figure S60. 1H NMR spectrum of PSU-62 (expanded from 5.0 to 3.0 ppm). 

Figure S61. Photograph of a water droplet placed on the different poly(urethane-urea) films. 
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Figure S62. Isothermal thermogram for Monomer S at 145 °C and 180 °C.

Calculation of Mn according to the integral of the signals in 1H NMR spectra of 
polyurethanes: 

MIPDI = 222.28 g/mol

MHD = 118.17 g/mol

MS = 352.34 g/mol

Assume x is the content of Monomer S with respect to IPDI, so the averaged molecular weight 
for the diols, M(average diol), is

M(average diol) = (1-x)*118.17+x*352.34 

Then, the molecular weight for an averaged repeating unit of PU (or PSU), MRU, is

M(average diol)+MIPDI = MRU

In the equation above, the contribution from the chain extender (ethylene diamine) is neglected, 
because it was used with relatively small extend (~10mol%) compared with IPDI.
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Furthermore, by assuming that both end groups are the alcohol groups from Monomer S, so

DPn = [Integral for IPDI] / [Integral for end group], where integral of IPDI was obtained by the 
integral of signal 11 (Fig. 7), and the integral of end group was obtained as the integral of signal 
aend (Fig. 7).

Finally, the molecular weight of polyurethanes was calculated as Mn = DPn*MRU


