Supplementary materials

CO₂ hydrogenation to formic acid over heterogenized ruthenium catalysts using a fixed bed reactor with separation units

Kwangho Park,^{†a} Gunniya Hariyanandam Gunasekar,^{†b} Seong-Hoon Kim,^c Hongjin Park,^c Samhwan Kim,^d Kiyoung Park,^d Kwang-Deog Jung, ^{*,b} and Sungho Yoon^{*,c}

^aDepartment of Applied Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, Republic of Korea.

^bClean Energy Research Centre, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, Republic of Korea

^cDepartment Chemistry, Chung Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea

^dDepartment of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.

Contents

- 1. Preparation method for synthesis of bpyTN-mixed CTFs
- 2. Nitrogen sorption isotherm measurements
- 3. Preliminary catalytic screening of Ru/bpyTN-CTF with batch reactor
- 4. Nitrogen sorption isotherm measurements for Ru/bpyTN-30-CTF (fresh)
- 5. ICP-MS measurements
- 6. SEM and EDS measurements
- 7. TGA measuremetns
- 8. XPS analysis
- 9. Feed flow reagents conditions for continuous CO₂ hydrogenation process
- 10. SEM & EDS for spent catalyst
- 11. Ternary phase equilibria in the system of Et₃N, H₂O and CO₂
- 12. Vapour-liquid equilibrium measurement
- 1. Preparation method for synthesis of bpyTN-mixed CTFs

Sample	DCBPY	TN	Heating rate	Т	Holding Time	Cooling rate
	[g]	[g]	[° C h ⁻¹]	[° C]	[h]	[° C h ⁻¹]
bpyTN-1-CTF@250	1.23	0.767	60	250	72	10
bpyTN-5-CTF@250	0.487	1.51	60	250	72	10
bpyTN-10-CTF@250	0.277	1.72	60	250	72	10
bpyTN-30-CTF@250	0.102	1.90	60	250	72	10
bpyTN-1-CTF	1.23	0.767	60	400	48	10
bpyTN-5-CTF	0.487	1.51	60	400	48	10
bpyTN-10-CTF	0.277	1.72	60	400	48	10
bpyTN-30-CTF	0.102	1.90	60	400	48	10

Table S1. Molar ratio of bpy and TN for the synthesis of bpyTN-mixed CTFs , andfurnace temperature program

*furnace was turned off at 200 $^{\rm o}{\rm C}$ in a cooling step.

2. Nitrogen sorption isotherm measurements

Figure S1. Nitrogen sorption isotherms of bpyTN-mixed CTFs@250 at 77 K

Figure S2. Nitrogen sorption isotherms of bpyTN-mixed CTFs at 77 K

Sample name	a _{s,BET}	$V_{\text{pore, tot}}$	V _{mean}
Sample name	$[m^2 g^{-1}]$	$[\mathrm{cm}^3 \mathrm{g}^{-1}]$	[nm]
bpyTN-1-CTF	652	0.30	1.81
bpyTN-5-CTF	914	0.41	1.78
bpyTN-10-CTF	1178	0.53	1.81
bpyTN-30-CTF	1251	0.57	1.81

 Table S2. Pore parameters of bpyTN-mixed CTFs

3. Preliminary catalytic screening of Ru/bpyTN-CTF with batch reactor

Table S3. preliminary catalytic activity tests for CO_2 hydrogenation to formate with batch reactor.

Sampla nama	[HCOO ⁻]*
Sample name	[M]
Ru/bpyTN-1-CTF	0.20
Ru/bpyTN-5-CTF	0.23
Ru/bpyTN-10-CTF	0.26
Ru/bpyTN-30-CTF	0.31

*batch reactions were performed in 300 ml of batch reactor with 40 mg of catalysts (Ru loading amount, 3 wt%) under 80 MPa ($CO_2/H_2=1:1$, pressurized at room temperature), at 120 ° C, for 2 h in 80 ml of 1M TEA aqueous solution.

4. Nitrogen sorption isotherm measurements for Ru/bpyTN-30-CTF (fresh)

Figure S3. Nitrogen sorption isotherms at 77 K, porosity parameter, and mercury porosimetry of Ru/bpyTN-30-CTF

5. ICP-MS measurements

Sample	Ru amount / Wt %
Ru/bpyTN-30-CTF (Fresh)	3.03
Filtrate with methanol washing	NA
Ru/bpyTN-30-CTF (Spent)	2.67
Produced liquid products	NA

 Table S4. ICP-MS analysis results for and the Ru/bpyTN-30-CTFs and filtrate

6. SEM and EDS measurements

Figure S4. SEM & EDS mapping of bpyTN-30-CTF

Element	Line Type	Wt%	Atomic %
С	K series	78.39	82.41
Ν	K series	10.82	9.75
0	K series	10.79	7.83
Total:		100.00	100.00

Table S5. Atomic composition of bpy-TN30-CTF determined by EDS

Figure S5. SEM & EDS mapping of Ru/bpyTN-30-CTF (fresh)

Table S6. Atomic composition of Ru/bpy-TN-30-CTF (fresh) determined by EDS

Element	Line Type	Wt%	Atomic %
С	K series	71.38	78.16
Ν	K series	9.66	9.07
0	K series	14.19	11.55
Cl	K series	2.51	0.93
Ru	L series	2.27	0.29
Total:		100.00	100.00

7. TGA measurements

.

Figure S6. TGA measurements of Ru/bpyTN-30-CTF

8. XPS analysis

Figure S7. Deconvoluted C 1s and Ru 3d (top left), N 1s (top right) spectrum of Ru/bpyTN-30-CTF (fresh) and C 1s and Ru 3d (bottom left), N 1s (bottom right) spectrum of Ru/bpyTN-30-CTF (spent)

Table S7. Atomic composition determined by XPS of fresh and spent Ru/bpy-TN-30-CTF

Sample	C1s	N1s	O1s	Cl2p	Ru3p3
Ru/bpyTN-CTF (Fresh)	81.14	8.52	9.04	1.04	0.27
Ru/bpyTN-CTF (Spent)	81.59	9.25	8.60	0.36	0.21

	Peak	BE	FWHM	Area	Doublet separation
		[eV]	[eV]		[eV]
Ru/bpyTN-30-CTF (fresh)	C1s, C-C	284.60	1.49	7692	
	C1s, C-N	285.50	1.62	2176	
	C1s, C-O	286.40	1.81	1163	
	C1s, O=C-O	288.20	2.79	2693	
	Ru3d _{5/2}	282.01	2.04	571	4.17
	Ru3d _{3/2}	286.18	1.21	342	
	N1s, pyridinic N	398.50	1.57	960	
	N1s, pyrrolic N	400.20	1.79	712	
	N1s, quaternary N	401.00	2.01	693	
Ru/bpyTN-30-CTF (spent)	Cls, C-C	284.60	1.52	9052	
	C1s, C-N	285.50	1.82	2235	
	C1s, C-O	286.40	1.93	1427	
	C1s, O=C-O	288.20	2.97	2198	
	Ru3d _{5/2}	281.92	1.88	530	4.17
	Ru3d _{3/2}	286.09	0.99	318	
	N1s, pyridinic N	398.50	1.53	1068	
	N1s, pyrrolic N	400.20	1.80	1301	
	N1s, quaternary N	401.00	2.20	691	

Table S8. Deconvolution parameters of XPS analysis for fresh and spent Ru/bpy-TN-30-CTF

9	Feed flow reagents	conditions f	or continuous	CO ₂ hydro	genation process
).	i cou now reagents	conditions i	of continuous	CO ₂ fryuro	genation process

Enter	Т	Р	H_2O^a	TEA ^a	[Et ₃ N]	$H_2^{\ b}$	CO ₂ ^b	u_{l}^{c}	$u_{\rm g}{}^{\rm d}$	AAR	Productivity	CO ₂ Conv.
Entry	[° C]	[bar]	[mol	h ⁻¹]	[M]	[mo	l h ⁻¹]	[cm s ⁻¹]	[cm s ⁻¹]	[M]	$[g_{form} g_{cat}^{-1} d^{-1}]$	[%]
1	60	100	13.60	0.68	2	0.68	0.68	0.25	24	0.05	25.9	5.2
2	80	100	13.60	0.68	2	0.68	0.68	0.25	24	0.10	51.7	10.4
3	100	100	13.60	0.68	2	0.68	0.68	0.25	24	0.28	142.5	28.6
4	120	100	13.60	0.68	2	0.68	0.68	0.25	24	0.51	265.7	53.3
5	140	100	13.60	0.68	2	0.68	0.68	0.25	24	0.67	355.1	71.3
6	120	60	13.60	0.68	2	0.68	0.68	0.25	24	0.42	219.9	44.2
7	120	80	13.60	0.68	2	0.68	0.68	0.25	24	0.50	259.2	52.0
8	120	120	13.60	0.68	2	0.68	0.68	0.25	24	0.60	317.5	63.8
9	120	140	13.60	0.68	2	0.68	0.68	0.25	24	0.63	333.2	66.9
10	120	120	32.74	0.68	1	0.68	0.68	0.49	24	0.40	204.9	41.1
11	120	120	7.33	0.68	3	0.68	0.68	0.16	24	0.61	307.2	65.6
12	120	120	13.0	0.68	5	0.68	0.68	0.24	24	0.51	166.0	33.3
13	120	120	2.30	0.68	6	0.68	0.68	0.10	24	0.38	66.2	13.3
14	120	120	0	0.68	neat	0.68	0.68	0.07	24	-	-	-
15	120	120	10.99	1.02	3	1.02	1.02	0.25	36	0.54	435.6	58.3
16	120	120	14.65	1.36	3	1.36	1.36	0.33	48	0.51	542.8	54.5
17	120	120	21.98	2.04	3	2.04	2.04	0.49	72	0.42	669.0	44.8
18	120	120	5.49	0.51	3	0.68	0.68	0.12	24	0.70	283.5	56.9
19	120	120	8.24	0.77	3	1.02	1.02	0.18	36	0.67	407.5	54.6
20	120	120	10.99	1.02	3	1.36	1.36	0.25	48	0.62	499.5	50.1
21	120	120	16.48	1.53	3	2.04	2.04	0.37	72	0.54	650.8	43.6
22	120	120	3.66	0.34	3	0.68	0.68	0.08	24	0.86	239.0	48.0
23	120	120	5.49	0.51	3	1.02	1.02	0.12	36	0.82	341.2	45.7
24	120	120	7.33	0.68	3	1.36	1.36	0.16	48	0.78	427.6	42.9
25	120	120	10.82	1.02	3	2.04	2.04	0.24	72	0.68	549.4	36.8
26-54	120	120	3.66	0.34	3	0.68	0.68	0.08	24	0.86	238.7	47.9

Table S9. Feed flow reagents conditions for continuous CO₂ hydrogenation process

 with trickle-bed reactor system.

^aliquid flow rate were controlled by high-pressure liquid pump, ^bgas flow rate were controlled by mass flow controller, ^csuperficial liquid velocity, and ^dsuperficial gas velocity

10. Side products analysis

Figure S8. ¹H NMR spectrum of the liquid product collected from the hydrogenation process

Figure S9. ¹³C NMR spectrum of the liquid product collected from the hydrogenation process

Figure S10. Gas chromatograph result for discharged gaseous feed from the continuous hydrogenation reaction

11. SEM & EDS for spent catalyst

Figure S11. SEM & EDS mapping of Ru/bpyTN-30-CTF (spent)

Table S11. Atomic composition of Ru/bpy-TN-30-CTF (spent) determined by EDS

Element	Line Type	Wt%	Atomic %
С	K series	72.47	79.08
Ν	K series	5.58	5.22
0	K series	18.17	14.88
Cl	K series	1.37	0.51
Ru	L series	2.41	0.31
Total:		100.00	100.00

12. Ternary phase equilibria in the system of Et₃N, H₂O and CO₂

Figure S12. Ternary phase diagram of triethyl amine (Et₃N)-formic acid (HCOOH)-water (H₂O)

13. Vapour-liquid equilibrium measurement

