Electronic Supplementary Information (ESI) for:

Photochemical evolution of hydrogen peroxide on lignins

Eva Miglbauer, a Maciej Gryszel, a,b Eric Daniel Glowacki a,c,d*

a Laboratory of Organic Electronics, ITN Campus Norrköping, Linköping University, Norrköping, Sweden, E-mail: eric.glowacki@liu.se
b Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
c Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
d Warsaw University of Technology, Faculty of Chemistry, Warsaw, Poland

Fig. S1. Test for peroxide yields as a function of LS solution concentration, with different concentrations at pH 2 and 0.1 M oxalate, irradiation with a violet lamp source for 6h in total.

Fig. S1. UV-vis spectra of irradiated (left) and non-irradiated (right) LS samples over time; blank, pH 2
Fig. S2. UV-vis spectra of irradiated (left) and non-irradiated (right) LS samples over time; blank, pH 7. Note: the slight decrease in absorption in the unirradiated controls is due to some aggregation of the sample, as we have confirmed qualitatively with dynamic light scattering measurements.

Fig. S3. UV-vis spectra of irradiated (left) and non-irradiated (right) LS samples over time; oxalate, pH 2

Fig. S4. UV-vis spectra of irradiated (left) and non-irradiated (right) LS samples over time, oxalate, pH 7
Fig. S5. UV-vis spectra of irradiated (left) and non-irradiated (right) LS samples over time; formate, pH 2

Fig. S6. UV-vis spectra of irradiated (left) and non-irradiated (right) LS samples over time; formate, pH 7

Fig. S8. UV-vis spectra of irradiated (left) and non-irradiated (right) LS samples over time; glucose, pH 2
Fig. S9. UV-vis spectra of irradiated (left) and non-irradiated (right) LS samples over time; glucose, pH 7

Fig. S10. UV-vis spectra of LS dissolved in water with different concentrations (left); and linear fit of absorbance at 450 nm vs. concentration of LS

Fig. S11. LS-HRP calibration series with different concentrations of LS