Electronic Supplementary Information

Laser ablation – tandem ICP-mass spectrometry (LA-ICP-MS/MS) imaging of iron oxide nanoparticles in Ca-rich gelatin microspheres

Thibaut Van Acker, Eduardo Bolea-Fernandez, Elly De Vlieghere, Jingxian Gao, Olivier De Wever and Frank Vanhaecke

*Ghent University, Department of Chemistry, Atomic & Mass Spectrometry – A&MS research unit, Campus Sterre, Krijgslaan 281-S12, 9000 Ghent, Belgium

*Corresponding author. E-mail address: Frank.Vanhaecke@UGent.be, phone number: +32 9 264 4848, fax number: +32 9 264 4960

Author contact information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>ORCID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thibaut Van Acker</td>
<td>Thibaut.VanAcker@UGent.be</td>
<td>https://orcid.org/0000-0002-0649-7228</td>
</tr>
<tr>
<td>Eduardo Bolea-Fernandez</td>
<td>Eduardo.BoleaFernandez@UGent.be</td>
<td>https://orcid.org/0000-0002-1856-2058</td>
</tr>
<tr>
<td>Elly De Vlieghere</td>
<td>Elly.DeVlieghere@UGent.be</td>
<td>https://orcid.org/0000-0003-0618-2258</td>
</tr>
<tr>
<td>Jingxian Gao</td>
<td>gao.jx@cau.edu.cn</td>
<td>no profile available</td>
</tr>
<tr>
<td>Olivier De Wever</td>
<td>Olivier.DeWever@UGent.be</td>
<td>https://orcid.org/0000-0002-5453-760X</td>
</tr>
<tr>
<td>Frank Vanhaecke</td>
<td>Frank.Vanhaecke@UGent.be</td>
<td>https://orcid.org/0000-0002-1884-3853</td>
</tr>
</tbody>
</table>
Electronic Supplementary Information

Table of contents

1. Figures

1.1. Figure S1: Evaluation of the signal background contribution by ablation of a soda-lime-silica glass microscope slide substrate: average $^{56}\text{Fe(NH}_3)_2^+\text{ signal response, expressed in counts, versus the applied laser energy density, expressed in J cm}^{-2}$.

1.2. Figure S2: LA-tandem ICP-MS images of the quantitatively ablated gelatin droplet standards. The left and right columns display the Fe(NH$_3$)$_2^+$ and Y(NH$_3$)$_6^+$ images, respectively, for the gelatin standards with an Fe concentration of (a) 0.74 µg g$^{-1}$, (b) 6.41 µg g$^{-1}$, (c) 13.94 µg g$^{-1}$, (d) 24.22 µg g$^{-1}$, (e) 35.67 µg g$^{-1}$, (f) 46.83 µg g$^{-1}$ and (g) 58.79 µg g$^{-1}$ (+ Y as internal standard). The minimum-maximum signal intensity of the color bars for Fe(NH$_3$)$_2^+$ and Y(NH$_3$)$_6^+$ are $0 - 1.00 \times 10^4$ and $0 - 1.50 \times 10^5$, respectively.

1.3. Figure S3: Calibration curve with corresponding 95% confidence interval of the linear regression, calculated and plotted based on the normalized integrated $^{56}\text{Fe(NH}_3)_2^+$ signal intensity, expressed in cts, and the absolute mass of Fe, expressed in fg, obtained by quantitative ablation of the air-dried gelatin droplet standards.
1. Figures

1.1. Figure S1

Figure S1. Evaluation of the signal background contribution by ablation of a soda-lime-silica glass microscope slide substrate: average $^{56}\text{Fe}(\text{NH}_3)_2^+$ signal response, expressed in counts, versus the applied laser energy density, expressed in J cm$^{-2}$.
Figure S2. LA-tandem ICP-MS images of the quantitatively ablated gelatin droplet standards. The left and right columns display the Fe(NH$_3$)$_2^+$ and Y(NH$_3$)$_6^+$ images, respectively, for the gelatin standards with an Fe concentration of (a) 0.74 µg g$^{-1}$, (b) 6.41 µg g$^{-1}$, (c) 13.94 µg g$^{-1}$, (d) 24.22 µg g$^{-1}$, (e) 35.67 µg g$^{-1}$, (f) 46.83 µg g$^{-1}$ and (g) 58.79 µg g$^{-1}$ (+ Y as internal standard). The minimum-maximum signal intensity of the color bars for Fe(NH$_3$)$_2^+$ and Y(NH$_3$)$_6^+$ are 0 − 1.00 × 104 and 0 − 1.50 × 103, respectively.
Figure S3. Calibration curve with corresponding 95% confidence interval of the linear regression, calculated and plotted based on the normalized integrated 56Fe(NH$_3$)$_2^+$ signal intensity, expressed in cts, and the absolute mass of Fe, expressed in fg, obtained by quantitative ablation of the air-dried gelatin droplet standards.