Supplementary information

Figure S1. Optimum the nebulizer gas flow rate (Q_g) for emission lines of different E_{sum} operating (♦) 1.0% w w$^{-1}$ nitric acid and, (■) 0.5% w w$^{-1}$ calcium nitrate solutions in MIP-OES.
Figure S2. Influence of E_{sum} on the relative signal intensity (I_{rel}) obtained in ICP-OES operating 1400 W rf power for different emission lines operating (■) 0.5% w$^{-1}$ calcium nitrate; (□) 5% w$^{-1}$ glycerol; and (●) 5% w$^{-1}$ sulfuric acid solutions, in comparison to the corresponding 1.0% w$^{-1}$ nitric acid. Q_g 0.6 L min$^{-1}$. I_{rel} values in-between dashed lines indicate no matrix effects.
Figure S3. Influence of the nebulizer gas flow rate (Q_g) on the net emission signal obtained in MIP-OES for (□) Sc I 391.182 nm; and, (■) Zn 213.857 nm when operating a 5% w w$^{-1}$ glycerol (dashed lines) and 1.0% w w$^{-1}$ nitric acid (continuous lines) solutions.
Figure S4. Influence of the nebulizer gas flow rate (Q_g) on the net emission signal obtained in MIP-OES for (square) Sc I 391.182 nm; and, (■) Zn 213.857 nm when operating a 5% w w$^{-1}$ sulfuric acid (dashed lines) and 1.0% w w$^{-1}$ nitric acid (continuous lines) solutions.