Electronic Supplementary Information (ESI)

Microfluidic impedance cytometry with N-shaped electrodes for lateral position measurement of single cells/particles

Dahou Yang and Ye Ai^*

Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372

*Corresponding author: Ye Ai (aiye@sutd.edu.sg).

Fig. S1. Quantitative comparisons of the lateral position of 3.6 μ m beads between our results and those obtained by the optical method at the flow rate of 25.4 μ l min⁻¹. (a) Electrical position *x* versus optical position *x*, showing the good linear correlation of coefficient of determination: $R^2 > 0.96$. Root-mean-square deviation (RMSD) = 11.0 μ m (i.e., 5.5% of the channel width). (d) Bland-Altman analysis comparing the lateral position *x* obtained by the electrical method and optical method. Most values are well placed between the 95% limits of agreement, which are represented as two dotted lines in the figure.

Fig. S2. Quantitative comparisons of the lateral position of 7 μ m beads between our results and those obtained by the optical method at the flow rate of 42.4 μ l min⁻¹. (a) Electrical position *x* versus optical position *x*, showing the good linear correlation of coefficient of determination: $R^2 > 0.99$. Root-mean-square deviation (RMSD) = 7.0 μ m (i.e., 3.5% of the channel width). (d) Bland-Altman analysis comparing the lateral position *x* obtained by the electrical method and optical method. Most values are well placed between the 95% limits of agreement, which are represented as two dotted lines in the figure.

	Wang et al. <i>Lab Chip</i> 2017 [Ref. 14]	Solsona et al. <i>Lab</i> <i>Chip</i> 2019 [Ref. 24]	Reale et al. <i>Microfluid.</i> <i>Nanofluid.</i> 2018 [Ref. 25]	Reale et al. <i>Lab Chip</i> 2019 [Ref. 26]	Proposed
		SU 8 Electrode Channel x y		, 0 30 μm	
Test samples	6 and 11 μm diameter	83 µm diameter beads	6 and 11 µm diameter	6 and 7 μm diameter	3.6, 5, 7 and 10 µm
	beads		beads	beads	diameter beads
				Human and chicken red blood cells(RBCs)	Human red blood cells(RBCs)
Minimum particle size tested	6 μm diameter beads	83 µm diameter	6 μm diameter	6 μm diameter	3.6 µm diameter
Channel dimensions (width × height)	188 μm × 17 μm	477 μm × 219 μm	40 μm × 21.5 μm	50 μm × 21.5 μm	$200 \ \mu\text{m} \times 20 \ \mu\text{m}$
Measuring width (channel width)	188 μm	477 μm	40 µm	50 μm	200 µm
Working mechanism	width (i.e., transit time) and height of peaks through non- parallel electrodes	peak magnitude through a gradient in the electric field	linear estimate utilizing the ratio of transit time by five pairs of electrodes	a linear mapping used to transform the peak unbalance information to the electrical position estimates	a simple analytic expression derived from the geometry of N-shaped electrodes and resulting differential signal profile
Resolution in lateral position detection (normalized as the percentage of the	20% (11 μm beads, 2ul/min)	12.5% (83 μm beads, relatively low flow rate)		4.8 % (Chicken RBCs, 20ul/min) 3.8 % (7 μm beads,	3.5 % (7 μm beads,
channel width)				20ul/min)	42.4ul/min)
				6.2 % (Human RBCs, 20ul/min)	5.7% (Human RBCs, 42.4ul /min)
			5.6% (6 μm beads, 10ul/min)		5.5% (3.6 μm beads, 25.4ul/min)
Presented data number	N.A.	<100	>2000	>2000	>2000
Throughput	Up to 400 cells/s	0.3 cells/s	50-375 cells/s	125-460 cells/s	Up to 800 cells/s
Demonstrated applications	distinguishing five lateral beads position induced by sheath flow	tracking the beads and measuring the system conductivity	monitoring the inertial focusing of beads	monitoring the sheath flows-induced beads/RBCs focusing	monitoring the sheath flows-induced beads focusing

Table S1. Impedance-based Techniques for the Measurement of Particle Lateral Position

This Table and figures except our work's are adapted from Refs. 14, 24 and 26 with permission from The Royal Society of Chemistry.