A “Sample-in- multiplex-digital-answer-out” chip for fast detection of pathogens
Juxin Yinabc, Zheyu Zouad, Zhenming Hua, Shan Zhangad, Fengping Zhange, Ben Wangbc, Shaowu Lvf, Ying Mua※ \\
a. Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310058, P. R. China. \\
b. Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; \\
c. Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China; \\
d. College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China \\
e. HeZe Municipal hospital, HeZe 274000,China; \\
f. Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130000, China; \\
※Corresponding author: muying@zju.edu.cn

lvsw@jlu.edu.cn
Figure S1 Design of the integrated microfluidic chip.
A Schematic diagram of the chip’s planar structure. 1, 2, 3 represent the position of the 3 screws. One of the detection areas (blue) was used as a negative control and the other three areas (red) were the detection areas of the three food-borne pathogens.
B: Photograph of integrated multi-detection chip
<table>
<thead>
<tr>
<th>Bacterial Strain</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
<th>Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli O157:H7</td>
<td>GTTAACTTTACCATTTGCAAAGTGATATGTA</td>
<td>GAAATATACTTTATAACGCATCGACCATTGATT</td>
<td>CCTTCAGAGTAGCGCCAAGATCTGTG-T(FAM)-T-dSpacer-AGT(BHQ-1)-GCCTGTCGCTAC</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>CGCCTGCAAGTCCTAAGACGCCTCAATCGAAA</td>
<td>CTGCATCTCCGTGGTATAGTAACTAATACATTGTTTA</td>
<td>CGAAAAAGAAAACACGGGATGAAAATCGATAAG(FAM)[THF][BHQ-1]ATACAA GGATTGGA</td>
</tr>
<tr>
<td>Salmonella enterica</td>
<td>CGTCTACGTAATGATTCTCTATTGATTAT</td>
<td>CATCAATCAAATAAGACCGTAAATTGTCGATGGCGAGGGCCTGGACGATACAGCA-T(FAM)-CGAT-T(BHQ-1)-TTGATTAATGAGAAT</td>
<td>GCGATGGCGAGGGGCTGGACGATTACAGCA-T(FAM)-CGAT-T(BHQ-1)-TTGATTAATGAGAT</td>
</tr>
</tbody>
</table>
Figure S2 Height uniformity and fluorescence intensity uniformity analysis of the integrated multiplex digital RPA chip. A: The uniformity of the height of the same column. B: Uniformity of heights of different columns. C: Surface roughness of the chip. D: Uniformity of brightness.

Figure S3 The feasibility of off-chip RPA reaction and the reliability of freeze-dried components.
A: Off-chip reaction, showing that the primers and probes used can be used for RPA reactions. Line I: Fluorescent picture inside the tube before reaction. Line II: Fluorescent picture inside the tube after reaction ① E. coli O157:H7; ② S. enterica; ③ Control group; ④ L. monocytogenes. B: The state of the chip before and after lyophilization. Microscope picture of the microwells before lyophilization. Microscope picture of the chamber after lyophilization. Powdered ingredients can be observed. (c) A picture of the RPA reaction using a chip embedding the reaction component, indicating that all the chambers can perform the RPA reaction normally.

![Figure S4 The real-time fluorescence curve of RPA reaction](image)

Figure S4 The real-time fluorescence curve of RPA reaction. The fluorescence signal was collected by ABI7900, and the results showed that the detection of gene copy number below 10 copies could not be accurately detected by real-time fluorescence quantitative method.
References
