Supplementary Information

Introducing Nitrogen Atoms to the Amidoalkylindoles: Potent and Selective Cannabinoid Type 2 Receptor Agonists with improved Aqueous Solubility

Yue-Yang Ji,^{†, ‡} Zhi-Long Wang,^{§, ‡} Fang-Ning Pei,[†] Jun-Jie Shi, [†]Jiao-Jiao Li, [†]

Hendra Gunosewoyo,[⊥]*Fan Yang*,[†]*Jie Tang*,[□]*Xin Xie*^{*,§}*Li-Fang Yu*^{*,†}

[†]Shanghai Engineering Research Center of Molecular Therapeutics and New

Drug Development, School of Chemistry and Molecular Engineering, East China

Normal University, 3663 North Zhongshan Road, Shanghai 200062, China

[§]CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou

Jing Road, Shanghai 201203, China.

[⊥]School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia

²Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China

Contents

¹H NMR and ¹³C NMR spectra for 6, 11, 12, 16-24, 26-28, 32-40, 43 S2

Supplementary Figure 2. ¹³C NMR (101 MHz, CDCl₃) spectrum for 6

Supplementary Figure 4. ¹³C NMR (101 MHz, DMSO-*d*₆) spectrum for 11

Supplementary Figure 8. ¹³C NMR (101 MHz, DMSO-*d*₆) spectrum for 16

Supplementary Figure 10. ¹³C NMR (101 MHz, CD₃OD) spectrum for 17

Supplementary Figure 12. ¹³C NMR (101 MHz, DMSO-*d*₆) spectrum for 18

Supplementary Figure 14. ¹³C NMR (101 MHz, CDCl₃) spectrum for 19

Supplementary Figure 16. ¹³C NMR (101 MHz, CDCl₃) spectrum for 20

Supplementary Figure 18. ¹³C NMR (101 MHz, CDCl₃) spectrum for 21

Supplementary Figure 24. ¹³C NMR (101 MHz, DMSO-*d*₆) spectrum for 24

Supplementary Figure 26. ¹³C NMR (101 MHz, DMSO-*d*₆) spectrum for 26

Supplementary Figure 28. ¹³C NMR (101 MHz, CDCl₃) spectrum for 27

Supplementary Figure 30. ¹³C NMR (101 MHz, CDCl₃) spectrum for 28

Supplementary Figure 34. ¹³C NMR (101 MHz, DMSO-*d*₆) spectrum for 33

Supplementary Figure 36. ¹³C NMR (101 MHz, DMSO-*d*₆) spectrum for 34

Supplementary Figure 40. ¹³C NMR (101 MHz, CD₃OD) spectrum for 36

Supplementary Figure 42. ¹³C NMR (101 MHz, CDCl₃) spectrum for 37

Supplementary Figure 44. ¹³C NMR (101 MHz, CDCl₃) spectrum for 38

Supplementary Figure 46. ¹³C NMR (101 MHz, CDCl₃) spectrum for 39

Supplementary Figure 50. ¹³C NMR (101 MHz, CDCl₃) spectrum for 43