Supplementary Material

Development of potent CPP6-gemcitabine conjugates against human prostate cancer cell line (PC-3)

Cristiana Correiaa,b,c, Cristina P. R. Xavierb,c, Diana Duartea,b,c, Abigail Ferreiraa,d, Sara Moreiraa,b,c, M. Helena Vasconcelosb,c,e, Nuno Valea,b,c,f,*

aLaboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
bInstitute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
cInstituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
dLAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
eLaboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
fDepartment of Molecular Pathology and Immunology, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal

* nuno.vale@ff.up.pt
Figure S1- Chemical structure of CPP6-1.

Figure S2- Chromatogram of the CPP6-1 after purification, acquired with a HPLC-DAD system, with a C18 column, using ACN in water with 0.05% TFA as eluent, in gradient mode (0 - 100%), for 30 minutes, at a flow of 1 mL/min and detection at $\lambda = 220$ nm.

Figure S3- Mass spectrum (LC-ESI/MS Orbitrap, positive mode) of the major peak of the LC-MS chromatogram (data not shown) of CPP6-1.
Figure S5 - Chromatogram of the CPP6-2 after purification, acquired with a HPLC-DAD system, with a C18 column, using ACN in water with 0.05% TFA as eluent, in gradient mode (0 - 100%), for 30 minutes, at a flow of 1 mL/min and detection at $\lambda = 220$ nm.

Figure S6 - Mass spectrum (LC-ESI/MS Orbitrap, positive mode) of the major peak of the LC-MS chromatogram (data not shown) of CPP6-2.
Figure S8 - Mass spectrum (LC-ESI/MS Orbitrap, positive mode) of the major peak of the LC-MS chromatogram (data not shown) of CPP6-3.

Figure S7 - Chemical structure of CPP6-3.

Figure S8 - Chromatogram of the CPP6-3 after purification, acquired with a HPLC-DAD system, with a C18 column, using ACN in water with 0.05% TFA as eluent, in gradient mode (0 - 100%), for 30 minutes, at a flow of 1 mL/min and detection at $\lambda = 220$ nm.

Figure S9 - Mass spectrum (LC-ESI/MS Orbitrap, positive mode) of the major peak of the LC-MS chromatogram (data not shown) of CPP6-3.
Figure S10 - Chemical structure of Gem-C2-CPP6-1 conjugate.

Figure S11 - Chromatogram of the Gem-C2-CPP6-1 conjugate after purification, acquired with a HPLC-DAD system, with a C18 column, using ACN in water with 0.05% TFA as eluent, in gradient mode (0 - 100%), for 30 minutes, at a flow of 1 mL/min and detection at $\lambda = 220$ nm.

Figure S12 - Mass spectrum (LC-ESI/MS Orbitrap, positive mode) of the major peak of the LC-MS chromatogram (data not shown) of Gem-C2-CPP6-1.
Figure S13 - Chemical structure of Gem-C2-CPP6-2 conjugate.

Figure S14 - Chromatogram of the Gem-C2-CPP6-2 conjugate after purification, acquired with a HPLC-DAD system, with a C18 column, using ACN in water with 0.05% TFA as eluent, in gradient mode (0 - 100%), for 30 minutes, at a flow of 1 mL/min and detection at \(\lambda = 220 \) nm.

Figure S15 - Mass spectrum (LC-ESI/MS Orbitrap, positive mode) of the major peak of the LC-MS chromatogram (data not shown), of Gem-C2-CPP6-2.
Figure S16 - Chemical structure of Gem-C2-CPP6-2 conjugate.

Figure S17 - Chromatogram of the Gem-C2-CPP6-3 conjugate after purification, acquired with a HPLC-DAD system, with a C18 column, using ACN in water with 0.05% TFA as eluent, in gradient mode (0 - 100%), for 30 minutes, at a flow of 1 mL/min and detection at λ = 220 nm.

Figure S18 - Mass spectrum (LC-ESI/MS Orbitrap, positive mode) of the major peak of the LC-MS chromatogram (data not shown) of Gem-C2-CPP6-3.
Figure S19. IC$_{50}$ of dFdC and conjugates with or without the presence of the inhibitor NBMPR in BxPC-3 cells: percentage of variation between the two values for each compound. +I: with inhibitor; -I: without inhibitor.

Figure S20. Chemical structures of drugs tamoxifen (7) and metformin (8)
Table S1. Molecular properties such as the molecular weight (MW), hydrophobicity parameter logP, lipophilicity parameter logD, and the total polar surface area (T_PSA) for peptides 4 and 6. For all CPP6 and dFdC-CPP6: Number of residue, 6; Extension coefficient (M^{-1}cm^{-1}), 5690; isoeletric-point, 14 and net charge at pH 7 is +2 for all peptides 4 and 6. (Calculated using GastroPlusTM Software)

<table>
<thead>
<tr>
<th>#</th>
<th>Compound</th>
<th>Sequence</th>
<th>MW/gmol^{-1}</th>
<th>logP</th>
<th>logD</th>
<th>T_PSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>CPP6-1</td>
<td>KLPVMW</td>
<td>772.02</td>
<td>1.94</td>
<td>0.65</td>
<td>247.63</td>
</tr>
<tr>
<td>4.2</td>
<td>CPP6-2</td>
<td>KLPVMW</td>
<td>772.02</td>
<td>2.01</td>
<td>0.59</td>
<td>247.63</td>
</tr>
<tr>
<td>4.3</td>
<td>CPP6-3</td>
<td>WVPTLK</td>
<td>741.94</td>
<td>1.21</td>
<td>-0.20</td>
<td>267.86</td>
</tr>
<tr>
<td>6.1</td>
<td>Gemcitabine-C2-CPP6-1</td>
<td>dFdC-(CH_{2})_{2}-WKLPVM</td>
<td>1117.28</td>
<td>2.51</td>
<td>1.51</td>
<td>364.39</td>
</tr>
<tr>
<td>6.2</td>
<td>Gemcitabine-C2-CPP6-2</td>
<td>dFdC-(CH_{2})_{2}-KLPVM</td>
<td>1117.28</td>
<td>2.40</td>
<td>1.24</td>
<td>364.39</td>
</tr>
<tr>
<td>6.3</td>
<td>Gemcitabine-C2-CPP6-3</td>
<td>dFdC-(CH_{2})_{2}-WVPTLK</td>
<td>1087.19</td>
<td>1.84</td>
<td>0.69</td>
<td>384.62</td>
</tr>
</tbody>
</table>