Supporting Information

Identification of \(N\)-benzothiazolyl-2-benzenesulfonamides as novel ABCA1 expression upregulators

Hongtao Liu,\(^{a,\#}\) Xinhai Jiang,\(^{\dagger}\) Xinfeng Gao,\(^{\dagger}\) Wenhua Tian,\(^{b}\) Chen Xu,\(^{b}\) Ruizhi Wang,\(^{b}\) Yanni Xu,\(^{c}\) Liping Wei,\(^{d}\) Feng Cao\(^{e}\) and Wenyan Li\(^{*b}\)

\(^a\) Department of Pharmacy, Hebei General Hospital, Shijiazhuang 05005, China.
\(^b\) Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China. E-Mails: wyli8512@mail.hebtu.edu.cn
\(^c\) NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing 100050, China. E-Mails: xuyanniwendeng@hotmail.com
\(^d\) Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, 190 Jieyuan Road, Hongqiao, Tianjin 300121, P.R.China.
\(^e\) Department of Cardiology & National Clinical Research Center of Geriatrics Disease, Chinese PLA General Hospital, Beijing 100853, China.
\(\dagger\) These authors contributed equally.

Content

1. Western blot analysis of ApoA-I ...2
2. Cell validity test ...2
3. ESI-MS, \(^1\)H NMR, \(^{13}\)C NMR for compounds \(6a-6n\) ...3-23
1. Western blot analysis of ApoA-I
In order to exclude the effect of ApoA-I on cholesterol efflux, we did western blot assay to examine whether our compound 6i affect ApoA-I protein expression in RAW264.7 cells. As Fig. S1, compound 6i at the indicated concentration (0 (control), 2.5, 5, 10 μM) didn’t affect ApoA-I protein expression. Therefore, the promoting cholesterol efflux effect of compound 6i should be induced by increasing ABCA1 expression.

![Western blot analysis of apoA-I](image)

Fig. S1 Western blot analysis of apoA-I

2. Cell validity test
HepG2 cells (ATCC, Rockville, MD) were grown in 96-well plate and treated with compounds (100, 50, 25, 12.5, 6.25, 3.125, 1.56 µM) for 72 h. Then the cell counting kit 8 (solarbio life sciences, Beijing, China) was used to investigate the influence of compounds on cell validity following the instruction. The results (Fig. S2) showed that all the tested compounds showed low cytotoxicity (CC_{50} > 100 μM).

![Cell validity test](image)

Fig. S2 Cell validity test
3. ESI-MS, 1H NMR, 13C NMR for compounds 6a-6n

ESI-MS of compound 6a

1H-NMR spectra of compound 6a
13C-NMR spectra of compound 6a

ESI-MS of compound 6b
1H-NMR spectra of compound 6b

13C-NMR spectra of compound 6b
ESI-MS of compound 6c

1H-NMR spectra of compound 6c
13C-NMR spectra of compound 6c

ESI-MS of compound 6d
H-NMR spectra of compound 6d

\[\text{H-NMR spectra of compound 6d}\]

\[\text{\^{13}C-NMR spectra of compound 6d}\]
ESI-MS of compound 6e

1H-NMR spectra of compound 6e
13C-NMR spectra of compound 6e

ESI-MS of compound 6f
1H-NMR spectra of compound 6f

13C-NMR spectra of compound 6f
ESI-MS of compound 6g

\[^1\text{H}-\text{NMR spectra of compound 6g}\]
13C-NMR spectra of compound 6g

ESI-MS of compound 6h
1H-NMR spectra of compound 6h

13C-NMR spectra of compound 6h
ESI-MS of compound 6i

^1^H-NMR spectra of compound 6i
13C-NMR spectra of compound 6i
ESI-MS of compound 6j

1H-NMR spectra of compound 6j
13C-NMR spectra of compound 6j

ESI-MS of compound 6k
^{1}H-NMR spectra of compound 6k

^{13}C-NMR spectra of compound 6k
ESI-MS of compound 6l

1H-NMR spectra of compound 6l
13C-NMR spectra of compound 6l

ESI-MS of compound 6m
1H-NMR spectra of compound 6m

13C-NMR spectra of compound 6m
ESI-MS of compound 6n

"H-NMR spectra of compound 6n

^C-NMR spectra of compound 6n
13C-NMR spectra of compound 6n