Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2019

Supporting Information: Computational screening for nested organic cage complexes Table S1: A list of all organic cage molecules included in this study, with commonly used literature names and the literature reference where the molecule is reported. Atom colouring is grey (carbon), blue (nitrogen), white (hydrogen), brown (bromine), pink (boron), beige (silicon), yellow (sulfur) and green (fluorine).

| No | Literature<br>name | Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reference |
|----|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1  | A1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         |
| 2  | A2                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         |
| 3  | A3                 | 2 Contraction of the second se | 1         |
| 4  | A4                 | T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1         |
| 5  | A5                 | - CALE - CALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1         |
| 6  | A6                 | + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1         |
| 7  | A7                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         |

| 8  | A8  | AND AND | 1 |
|----|-----|---------|---|
| 9  | A9  | A CAR   | 1 |
| 10 | A10 | THE P   | 1 |
| 11 | A11 |         | 1 |
| 12 | A12 |         | 1 |
| 13 | A13 |         | 1 |
| 14 | A14 |         | 1 |

| 15 | A15 | 1 |
|----|-----|---|
| 16 | A16 | 1 |
| 17 | A17 | 1 |
| 18 | A18 | 1 |
| 19 | A19 | 1 |

| 20 | A20 | 1 |
|----|-----|---|
| 21 | A21 | 1 |
| 22 | A22 | 1 |
| 23 | A23 | 1 |
| 24 | A24 | 1 |

| 25 | A25 |                                       | 1 |
|----|-----|---------------------------------------|---|
| 26 | A26 |                                       | 1 |
| 27 | B1  |                                       | 1 |
| 28 | B2  |                                       | 1 |
| 29 | B3  | S S S S S S S S S S S S S S S S S S S | 1 |
| 30 | B4  | + B+                                  | 1 |

| 31 | B5  | AND AND                               | 1 |
|----|-----|---------------------------------------|---|
| 32 | B6  |                                       | 1 |
| 33 | B7  |                                       | 1 |
| 34 | B8  | A A A A A A A A A A A A A A A A A A A | 1 |
| 35 | В9  |                                       | 1 |
| 36 | B10 | A CAR                                 | 1 |
| 37 | B11 |                                       | 1 |

| 38 | B12 | 1 |
|----|-----|---|
| 39 | B13 | 1 |
| 40 | B14 | 1 |
| 41 | B15 | 1 |
| 42 | B16 | 1 |

| 43 | B17 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |
|----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 44 | B18 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |
| 45 | B19 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |
| 46 | B20 | Real Provide American Science Provide American | 1 |
| 47 | B21 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |
| 48 | B22 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |

| 49 | B23 | 1 |
|----|-----|---|
| 50 | B24 | 1 |
| 51 | B25 | 1 |
| 52 | B26 | 1 |
| 53 | C1  | 1 |

| 54 | C2 |                                         | 1 |
|----|----|-----------------------------------------|---|
| 55 | C3 |                                         | 1 |
| 56 | C4 |                                         | 1 |
| 57 | C5 |                                         | 1 |
| 58 | C6 | - A A A A A A A A A A A A A A A A A A A | 1 |
| 59 | C7 | HAN HAN                                 | 1 |
| 60 | C8 |                                         | 1 |

| 61 | C9  | 1 |
|----|-----|---|
| 62 | C10 | 1 |
| 63 | C11 | 1 |
| 64 | C12 | 1 |
| 65 | C13 | 1 |

| 66 | C14 | 1 |
|----|-----|---|
| 67 | C15 | 1 |
| 68 | C16 | 1 |
| 69 | C17 | 1 |

| 70 | C18 | 1   |
|----|-----|-----|
| 71 | C19 | 1   |
| 72 | C20 | 1   |
| 73 | C21 | 1   |
| 74 | C22 | 1,2 |

| 75 | C23 | 1 |
|----|-----|---|
| 76 | C24 | 1 |
| 77 | C25 | 1 |
| 78 | C26 | 1 |

| 79 | $\mathbf{TCC1}_{[6+12]}$       | 3 |
|----|--------------------------------|---|
| 80 | $	ext{TCC2}_{[6+12]}$          | 3 |
| 81 | $\mathbf{TCC3}_{[6+12]}$       | 3 |
| 82 | Carbon<br>nanocage<br><b>1</b> | 4 |
| 83 | CB[7]                          | 5 |

| 84 | ExCage                     | 6 |
|----|----------------------------|---|
| 85 | Mastalerz<br>cage          | 7 |
| 86 | Cram<br>hemicarce-<br>plex | 8 |
| 87 | Mastalerz<br>cage          | 7 |
| 88 | CB[6]                      | 5 |
| 89 | Mastalerz<br>cage          | 9 |

| 90 | Dodecalkyl<br>cage <b>7</b> | 10 |
|----|-----------------------------|----|
| 91 | Cram<br>hemicarce-<br>plex  | 8  |
| 92 | Noria                       | 11 |
| 93 | CB[5]                       | 5  |
| 94 | Mastalerz<br>cage           | 9  |

| 95 | Triazine-<br>based<br>cage    | 12 |
|----|-------------------------------|----|
| 96 | BlueCage                      | 13 |
| 97 | Mastalerz<br>boronate<br>cage | 14 |
| 98 | Noria                         | 11 |
| 99 | Mastalerz<br>cage             | 15 |

| 100 | FT-<br>RCC3    |      | 16 |
|-----|----------------|------|----|
| 101 | Doonan<br>cage |      | 17 |
| 102 | CC2            | **** | 18 |
| 103 | CC9            |      | 19 |

| 104 | RCC1c             | 20 |
|-----|-------------------|----|
| 105 | Cryptophan        | 21 |
| 106 | AT-<br>RCC3       | 16 |
| 107 | Mukherjee<br>cage | 22 |
| 108 | Iwasawa<br>cage   | 23 |

| 109 | CC9   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24 |
|-----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 110 | CC1   | THE REAL PROPERTY AND A DECEMBER OF A DECEMBER | 18 |
| 111 | RCC1b |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 |
| 112 | CC4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25 |

| 113 | CC10  | 19 |
|-----|-------|----|
| 114 | RCC1a | 20 |
| 115 | CC3   | 18 |
| 116 | RCC1d | 20 |

| 117 | Gawroński<br>cage | 26 |
|-----|-------------------|----|
| 118 | TCC3              | 27 |
| 119 | TCC2              | 27 |
| 120 | TCC1              | 27 |
| 121 | CC11              | 28 |

| 122 | CC12 |                                         | 28 |
|-----|------|-----------------------------------------|----|
| 123 | CC15 |                                         | 29 |
| 124 | CC6  | A C C C C C C C C C C C C C C C C C C C | 30 |
| 125 | CC7  |                                         | 31 |

| 126 | CC8             | 31 |
|-----|-----------------|----|
| 127 | CC13            | 32 |
| 128 | Beuerle<br>cage | 33 |
| 129 | Beuerle<br>cage | 33 |

| 130 | Beuerle<br>cage   | 33 |
|-----|-------------------|----|
| 131 | Beuerle<br>cage   | 34 |
| 132 | Mastalerz<br>cage | 35 |

Table S2: Structural characterisation of the individual cage molecules. The diameters are all given in Ångstrom.  $D_{max}$  is the maximum diameter of the molecule,  $D_{avg}$  is the average weighted diameter of the molecule,  $D_{cav}$  is the diameter of the largest sphere that can be placed inside the molecule's void and the average  $D_{window}$  is the average diameter of the molecule's windows.

| Cage ID | $D_{max}$ | $D_{avg}$ | $D_{cav}$ | No. of windows | Average $D_{window}$ |
|---------|-----------|-----------|-----------|----------------|----------------------|
| 1       | 15.0      | 11.7      | 3.2       | 3              | 2.5                  |
| 2       | 18.5      | 12.4      | 4.4       | 3              | 3.4                  |
| 3       | 16.8      | 12.2      | 3.2       | 3              | 3.0                  |
| 4       | 23.3      | 12.8      | 3.3       | 3              | 2.7                  |
| 5       | 21.8      | 12.4      | 1.8       | 3              | 2.6                  |
| 6       | 28.4      | 11.7      | 0.9       | 3              | 2.6                  |
| 7       | 24.7      | 12.8      | 4.2       | 3              | 3.0                  |
| 8       | 21.5      | 12.3      | 1.8       | 3              | 2.2                  |
| 9       | 21.0      | 12.7      | 4.2       | 3              | 3.1                  |
| 10      | 28.2      | 15.2      | 4.6       | 4              | 3.9                  |
| 11      | 20.2      | 18.1      | 10.9      | 4              | 6.5                  |
| 12      | 16.2      | 11.7      | 3.8       | 4              | 2.1                  |
| 13      | 22.1      | 17.1      | 6.5       | 7              | 3.9                  |
| 14      | 24.7      | 14.4      | 0.9       | 2              | 2.5                  |
| 15      | 24.5      | 21.6      | 9.9       | 4              | 8.0                  |
| 16      | 24.9      | 21.5      | 11.9      | 4              | 8.5                  |
| 17      | 23.6      | 13.0      | 0.0       | 0              | 0.0                  |
| 18      | 27.0      | 23.7      | 14.6      | 4              | 10.0                 |
| 19      | 28.8      | 25.0      | 13.5      | 4              | 10.6                 |
| 20      | 21.9      | 19.5      | 11.8      | 4              | 7.5                  |
| 21      | 16.9      | 10.3      | 1.5       | 3              | 0.9                  |
| 22      | 17.9      | 14.9      | 7.2       | 6              | 3.6                  |
| 23      | 22.4      | 18.7      | 9.2       | 6              | 4.5                  |
| 24      | 25.2      | 20.4      | 10.9      | 6              | 6.1                  |
| 25      | 29.7      | 23.6      | 13.0      | 6              | 8.3                  |
| 26      | 32.7      | 24.9      | 13.1      | 6              | 8.1                  |
| 27      | 15.2      | 12.4      | 2.2       | 3              | 2.4                  |
| 28      | 17.5      | 12.7      | 2.2       | 3              | 4.0                  |
| 29      | 18.6      | 12.6      | 3.1       | 3              | 2.7                  |
| 30      | 23.3      | 12.9      | 3.1       | 3              | 2.6                  |
| 31      | 22.1      | 13.1      | 2.2       | 3              | 2.3                  |
| 32      | 24.9      | 12.9      | 3.2       | 3              | 2.7                  |
| 33      | 23.9      | 12.8      | 3.2       | 3              | 2.7                  |
| 34      | 20.2      | 12.7      | 3.2       | 3              | 2.5                  |
| 35      | 20.0      | 12.7      | 3.2       | 3              | 2.7                  |
| 36      | 29.1      | 15.9      | 6.0       | 3              | 5.0                  |

| 37     | 20.9 | 18.5 | 6.3  | 4 | 6.8  |
|--------|------|------|------|---|------|
| 38     | 21.6 | 18.3 | 7.0  | 4 | 5.3  |
| 39     | 24.9 | 16.5 | 3.7  | 5 | 3.0  |
| 40     | 21.6 | 16.4 | 6.0  | 3 | 5.4  |
| 41     | 25.5 | 22.2 | 9.9  | 4 | 8.2  |
| 42     | 25.5 | 22.2 | 10.2 | 4 | 7.9  |
| 43     | 26.1 | 22.1 | 8.9  | 4 | 9.1  |
| 44     | 28.1 | 24.6 | 12.1 | 4 | 10.2 |
| 45     | 29.7 | 25.9 | 13.1 | 4 | 11.3 |
| 46     | 17.5 | 11.1 | 1.7  | 3 | 1.1  |
| 47     | 17.7 | 11.6 | 2.5  | 3 | 1.9  |
| 48     | 17.9 | 15.3 | 7.4  | 6 | 3.4  |
| 49     | 22.4 | 19.3 | 9.7  | 6 | 4.8  |
| 50     | 25.2 | 21.2 | 11.4 | 6 | 6.8  |
| 51     | 29.9 | 23.5 | 12.4 | 6 | 8.0  |
| 52     | 33.0 | 24.3 | 12.2 | 6 | 8.4  |
| 53     | 17.3 | 12.7 | 2.1  | 3 | 2.3  |
| 54     | 17.3 | 12.9 | 3.1  | 3 | 2.8  |
| 55     | 17.9 | 12.9 | 3.0  | 3 | 2.7  |
| 56     | 24.8 | 13.5 | 3.0  | 3 | 2.7  |
| 57     | 22.0 | 13.5 | 2.1  | 3 | 2.4  |
| 58     | 25.2 | 13.4 | 3.1  | 3 | 2.7  |
| 59     | 25.3 | 13.5 | 2.1  | 3 | 2.4  |
| 60     | 21.3 | 13.4 | 2.1  | 3 | 2.4  |
| 61     | 20.8 | 13.2 | 3.1  | 3 | 2.8  |
| 62     | 28.6 | 16.8 | 5.1  | 3 | 4.4  |
| 63     | 23.2 | 19.0 | 6.3  | 4 | 6.6  |
| 64     | 18.4 | 11.6 | 2.1  | 3 | 1.5  |
| 65     | 25.2 | 17.1 | 4.1  | 4 | 5.9  |
| 66     | 18.2 | 11.9 | 0.0  | 0 | 0.0  |
| 67     | 27.6 | 22.5 | 10.0 | 4 | 8.3  |
| 68     | 28.1 | 22.6 | 10.3 | 4 | 8.3  |
| 69     | 27.6 | 21.7 | 8.8  | 4 | 7.6  |
| 70     | 30.4 | 24.6 | 11.7 | 4 | 9.9  |
| 71     | 32.3 | 25.7 | 13.6 | 4 | 10.9 |
| 72     | 19.8 | 11.5 | 1.8  | 3 | 1.2  |
| 73     | 19.8 | 11.0 | 1.6  | 3 | 0.9  |
| 74     | 19.8 | 15.8 | 7.5  | 6 | 3.8  |
| 75     | 24.1 | 19.5 | 9.8  | 6 | 5.3  |
| 76<br> | 26.8 | 20.6 | 9.0  | 6 | 5.7  |
| 77     | 31.3 | 23.7 | 12.0 | 6 | 7.8  |
| 78     | 34.3 | 24.1 | 11.8 | 6 | 8.1  |
| 79     | 30.8 | 21.8 | 11.2 | 8 | 5.6  |
| 80     | 32.8 | 23.2 | 11.1 | 8 | 6.1  |
| 81     | 37.4 | 26.3 | 14.8 | 8 | 6.9  |

| 82  | 18.9 | 16.3 | 8.2  | 3  | 6.9  |
|-----|------|------|------|----|------|
| 83  | 16.6 | 12.7 | 3.6  | 2  | 2.5  |
| 84  | 18.4 | 13.8 | 4.4  | 3  | 4.1  |
| 85  | 30.9 | 23.1 | 8.1  | 4  | 6.1  |
| 86  | 28.8 | 15.9 | 4.8  | 8  | 1.1  |
| 87  | 31.1 | 22.8 | 10.5 | 4  | 9.2  |
| 88  | 14.8 | 12.3 | 5.0  | 2  | 3.5  |
| 89  | 22.2 | 19.2 | 7.1  | 3  | 7.4  |
| 90  | 28.6 | 16.2 | 5.5  | 4  | 3.7  |
| 91  | 29.4 | 15.7 | 4.1  | 10 | 1.9  |
| 92  | 20.6 | 15.3 | 5.0  | 8  | 1.9  |
| 93  | 12.8 | 11.0 | 4.0  | 2  | 2.3  |
| 94  | 21.5 | 17.7 | 5.2  | 3  | 5.9  |
| 95  | 32.9 | 20.2 | 10.7 | 4  | 8.0  |
| 96  | 18.1 | 13.9 | 4.7  | 3  | 4.5  |
| 97  | 42.8 | 32.3 | 21.9 | 6  | 14.4 |
| 98  | 29.6 | 20.3 | 4.8  | 4  | 2.3  |
| 99  | 29.5 | 22.5 | 10.8 | 4  | 9.1  |
| 100 | 22.5 | 14.2 | 5.7  | 4  | 3.2  |
| 101 | 34.4 | 21.4 | 10.2 | 3  | 9.7  |
| 102 | 20.2 | 13.6 | 5.7  | 4  | 3.9  |
| 103 | 25.4 | 15.5 | 5.4  | 4  | 3.6  |
| 104 | 26.4 | 18.2 | 4.9  | 4  | 3.1  |
| 105 | 15.8 | 12.1 | 4.8  | 5  | 1.5  |
| 106 | 22.6 | 13.4 | 3.4  | 4  | 1.4  |
| 107 | 25.3 | 16.7 | 8.0  | 3  | 6.1  |
| 108 | 34.4 | 24.6 | 14.8 | 4  | 11.0 |
| 109 | 28.3 | 17.9 | 8.4  | 4  | 5.1  |
| 110 | 17.6 | 13.1 | 5.5  | 4  | 3.7  |
| 111 | 29.8 | 16.5 | 4.2  | 4  | 2.2  |
| 112 | 21.6 | 14.2 | 6.1  | 4  | 4.3  |
| 113 | 26.7 | 15.6 | 5.4  | 4  | 3.7  |
| 114 | 28.3 | 15.7 | 4.1  | 4  | 2.0  |
| 115 | 22.6 | 14.1 | 5.5  | 4  | 3.7  |
| 116 | 22.2 | 16.5 | 4.5  | 4  | 2.6  |
| 117 | 34.3 | 25.4 | 12.9 | 6  | 8.7  |
| 118 | 29.7 | 16.8 | 6.4  | 5  | 4.4  |
| 119 | 25.8 | 12.9 | 1.6  | 4  | 1.7  |
| 120 | 24.6 | 14.6 | 4.8  | 5  | 3.6  |
| 121 | 21.2 | 13.9 | 2.9  | 0  | 0.0  |
| 122 | 27.9 | 16.0 | 5.4  | 8  | 2.1  |
| 123 | 22.6 | 13.4 | 5.1  | 5  | 0.9  |
| 124 | 22.0 | 10.5 | 1.3  | 3  | 0.8  |
| 125 | 32.3 | 22.2 | 11.0 | 12 | 3.9  |
| 126 | 32.0 | 21.3 | 9.5  | 12 | 4.2  |

| 127 | 20.2 | 13.9 | 5.7  | 4 | 3.9  |
|-----|------|------|------|---|------|
| 128 | 27.5 | 17.8 | 8.7  | 3 | 7.8  |
| 129 | 38.7 | 31.1 | 21.2 | 4 | 16.5 |
| 130 | 37.2 | 28.0 | 17.6 | 4 | 12.9 |
| 131 | 47.2 | 33.9 | 25.6 | 6 | 8.3  |
| 132 | 28.1 | 22.8 | 11.5 | 4 | 10.0 |



Figure S1: A 2D heat-map plot showing the difference in the match of the void of the larger cage in the pair with the maximum dimension of the smaller cage in the pair. A positive value of the size difference means that the outer cage void is larger than the size of the inner cage. A negative value of the size difference means that the outer cage void is smaller than the size of the inner cage. The plot is symmetric about the diagonal as a pairing of cage x and cage y is equivalent to a pairing of cage y and cage x.



Figure S2: A comparison of binding energy of a pairing to the difference in the match of the void of the larger cage in the pair with the maximum dimension of the smaller cage in the pair. A positive value of the size difference means that the outer cage void is larger than the size of the inner cage. A negative value of the size difference means that the outer cage void is smaller than the size of the inner cage.



Figure S3: The binding energies of self-catenation in the cage systems, only binding energies that are favourable (negative) are shown.



Figure S4: The molecules ranked 4 to 20 that have the most energetically favourable selfcatenations. One molecule is shown with green carbons and one with pink carbons.



Figure S5: A histogram of the frequency a cage was found in an energetically favourable (E<sub>b</sub> <0 kJ mol<sup>-1</sup>) nested cage pair.



Figure S6: The molecules ranked 6 to 20 that have the most energetically favourable cagein-a-cage complexes. Cage colouring as follows: **117**, purple; **91**, royal blue; **116**, pink; **86**, mint green; **113**, yellow; **89**, red; **56**, grey; **26**, lilac; **71**, cyan; **81**, white; **30**, bright green; **52**, black; **90**, brown; **50**, pale cyan; **111**, gold; **48**, dark red; **52** pale mint green and **28**, marine blue.

Table S3: A list of which cages meet the criteria for "List 1" and "List 2". "List 1" refers to cages made from precursors that are commercially available or have easily synthesisable precursors and "List 2" refers to cages that meet "List 1" requirements, but are also known to form readily and cleanly, with good yields.

| Cage ID  | List1        | List2        |
|----------|--------------|--------------|
| 1        | $\checkmark$ |              |
| 2        | $\checkmark$ |              |
| 3        | $\checkmark$ |              |
| 4        | $\checkmark$ |              |
| 5        | $\checkmark$ |              |
| 6        | $\checkmark$ |              |
| 7        | $\checkmark$ |              |
| 8        | $\checkmark$ |              |
| 9        | $\checkmark$ |              |
| 10       | $\checkmark$ |              |
| 11       | $\checkmark$ | $\checkmark$ |
| 12       | $\checkmark$ |              |
| 13       | $\checkmark$ |              |
| 14       | $\checkmark$ |              |
| 15       | $\checkmark$ |              |
| 16       | V            |              |
| 17       | $\checkmark$ |              |
| 18       | $\checkmark$ |              |
| 19       | V            |              |
| 20       | V            |              |
| 21       | V            |              |
| 22       | V            |              |
| 23       | V            |              |
| 24       | V            |              |
| 25       | V            |              |
| 26       | V            |              |
| 27       | V            | V            |
| 28       | V            | V            |
| 29       | V            | /            |
| 30       | V            | V            |
| 31       | V            | V            |
| 32       | V            | V            |
| 33       | V            |              |
| 54<br>25 | V            | V            |
| <u> </u> | V            | V            |
| 30<br>97 | V            |              |
| 37       | $\checkmark$ | √            |

38
 
$$\checkmark$$

 39
  $\checkmark$ 

 40
  $\checkmark$ 

 41
  $\checkmark$ 

 42
  $\checkmark$ 

 43
  $\checkmark$ 

 44
  $\checkmark$ 

 45
  $\checkmark$ 

 46
  $\checkmark$ 

 47
  $\checkmark$ 

 48
  $\checkmark$ 

 49
  $\checkmark$ 

 50
  $\checkmark$ 

 51
  $\checkmark$ 

 52
  $\checkmark$ 

 53
  $\checkmark$ 

 54
  $\checkmark$ 

 55
  $\checkmark$ 

 56
  $\checkmark$ 

 57
  $\checkmark$ 

 58
  $\checkmark$ 

 59
  $\checkmark$ 

 60
  $\checkmark$ 

 61
  $\checkmark$ 

 62
  $\checkmark$ 

 63
  $\checkmark$ 

 64
  $\checkmark$ 

 65
  $\checkmark$ 

 66
  $\checkmark$ 

 67
  $\checkmark$ 

 71
  $\checkmark$ 

 72
  $\checkmark$ 

 73
  $\checkmark$ 

 74
  $\checkmark$ 

 75
  $\checkmark$ 

 79
  $\checkmark$ 

83
 
$$\checkmark$$
 $\checkmark$ 

 84
  $\sim$ 

 85
  $\checkmark$ 
 $\checkmark$ 

 86
  $\checkmark$ 
 $\checkmark$ 

 87
  $\checkmark$ 
 $\checkmark$ 

 89
  $\checkmark$ 
 $\checkmark$ 

 89
  $\checkmark$ 
 $\checkmark$ 

 89
  $\checkmark$ 
 $\checkmark$ 

 90
  $\checkmark$ 
 $\checkmark$ 

 91
  $\sim$ 
 $\checkmark$ 

 92
  $\checkmark$ 
 $\checkmark$ 

 93
  $\checkmark$ 
 $\checkmark$ 

 94
  $\checkmark$ 
 $\checkmark$ 

 95
  $\checkmark$ 
 $\checkmark$ 

 96
  $\sim$ 
 $\checkmark$ 

 97
  $\checkmark$ 
 $\checkmark$ 

 98
  $\checkmark$ 
 $\checkmark$ 

 99
  $\checkmark$ 
 $\checkmark$ 

 100
  $\checkmark$ 
 $\checkmark$ 

 101
  $\checkmark$ 
 $\checkmark$ 

 102
  $\checkmark$ 
 $\checkmark$ 

 103
  $\checkmark$ 
 $\checkmark$ 

 104
  $\checkmark$ 
 $\checkmark$ 

 105
  $\checkmark$ 
 $\checkmark$ 

 110
  $\checkmark$ 
 $\checkmark$ 

 111
  $\checkmark$ 
 $\checkmark$ 

 112
  $\checkmark$ 
 $\checkmark$ 

| 128 | $\checkmark$ | $\checkmark$ |
|-----|--------------|--------------|
| 129 | $\checkmark$ | $\checkmark$ |
| 130 | $\checkmark$ | $\checkmark$ |
| 131 | $\checkmark$ | $\checkmark$ |
| 132 | $\checkmark$ | $\checkmark$ |

## References

- R. L. Greenaway, V. Santolini, M. J. Bennison, B. M. Alston, C. J. Pugh, M. A. Little, M. Miklitz, E. G. B. Eden-Rump, R. Clowes, A. Shakil, H. J. Cuthbertson, H. Armstrong, M. E. Briggs, K. E. Jelfs and A. I. Cooper, *Nature Communications*, 2018, 9, 2849.
- [2] J. C. Lauer, W.-S. Zhang, F. Rominger, R. R. Schröder and M. Mastalerz, *Chem. Eur. J.*, 2018, 24, 1816–1820.
- [3] C. Stackhouse, V. Santolini, R. Greenaway, M. A. Little, M. E. Briggs, K. E. Jelfs and A. I. Cooper, *Crystal Growth & Design*, 2018, 18, 2759–2764.
- [4] K. Matsui, Y. Segawa and K. Itami, J. Am. Chem. Soc., 2014, 136, 16452–16458.
- [5] J. Kim, I.-S. Jung, S.-Y. Kim, E. Lee, J.-K. Kang, S. Sakamoto, K. Yamaguchi and K. Kim, J. Am. Chem. Soc., 2000, 122, 540–541.
- [6] E. J. Dale, N. A. Vermeulen, A. A. Thomas, J. C. Barnes, M. Juríček, A. K. Blackburn, N. L. Strutt, A. A. Sarjeant, C. L. Stern, S. E. Denmark and J. F. Stoddart, J. Am. Chem. Soc., 2014, 136, 10669–10682.
- [7] M. Mastalerz, M. W. Schneider, I. M. Oppel and O. Presly, Angew. Chem. Int. Ed., 2011, 50, 1046–1051.
- [8] B. S. Park, C. B. Knobler and D. J. Cram, *Chem. Commun.*, 1998, **0**, 55–56.
- [9] M. W. Schneider, I. M. Oppel and M. Mastalerz, Chem. Eur. J., 2012, 18, 4156–4160.
- [10] N. Giri, C. E. Davidson, G. Melaugh, M. G. Del Pópolo, J. T. A. Jones, T. Hasell, A. I. Cooper, P. N. Horton, M. B. Hursthouse and S. L. James, *Chem. Sci.*, 2012, 3, 2153–2158.
- [11] H. Kudo, H. Kudo, R. Hayashi, R. Hayashi, K. Mitani, K. Mitani, T. Yokozawa, T. Yokozawa, N. C. Kasuga, N. C. Kasuga, T. Nishikubo and T. Nishikubo, *Angew. Chem. Int. Ed.*, 2006, 45, 7948–7952.
- [12] H. Ding, Y. Yang, B. Li, F. Pan, G. Zhu, M. Zeller, D. Yuan and C. Wang, *Chem. Commun.*, 2015, **51**, 1976–1979.
- [13] N. Hafezi, J. M. Holcroft, K. J. Hartlieb, E. J. Dale, N. A. Vermeulen, C. L. Stern, A. A. Sarjeant and J. F. Stoddart, Angew. Chem. Int. Ed., 2015, 54, 456–461.
- [14] G. Zhang, O. Presly, F. White, I. M. Oppel and M. Mastalerz, Angew. Chem. Int. Ed., 2014, 53, 5126–5130.
- [15] M. Mastalerz, Chem. Commun., 2008, **39**, 4756–4758.
- [16] M. Liu, M. A. Little, K. E. Jelfs, J. T. A. Jones, M. Schmidtmann, S. Y. Chong, T. Hasell and A. I. Cooper, J. Am. Chem. Soc., 2014, 136, 7583–7586.

- [17] C. J. Doonan, C. J. Sumby, J. D. Evans, D. M. Huang, P. Valente and A. Burgun, *Chem. Commun.*, 2016, **52**, 8850–8853.
- [18] T. Tozawa, J. T. A. Jones, S. I. Swamy, S. Jiang, D. J. Adams, S. Shakespeare, D. Bradshaw, T. Hasell, S. Y. Chong, C. Tang, S. Thompson, J. Parker, A. Trewin, J. Bacsa, A. M. Z. Slawin, A. Steiner and A. I. Cooper, *Nature Mater.*, 2009, 8, 973–978.
- [19] M. J. Bojdys, M. E. Briggs, J. T. A. Jones, D. J. Adams, S. Y. Chong, M. Schmidtmann and A. I. Cooper, J. Am. Chem. Soc., 2011, 133, 16566–16571.
- [20] J. L. Culshaw, G. Cheng, M. Schmidtmann, T. Hasell, M. Liu, D. J. Adams and A. I. Cooper, J. Am. Chem. Soc., 2013, 135, 9307–9310.
- [21] T. Brotin and J.-P. Dutasta, *Chem. Rev.*, 2009, **109**, 88–130.
- [22] K. Acharyya and P. S. Mukherjee, *Chem. Commun.*, 2014, **50**, 15788–15791.
- [23] K. Ono, R. Aizawa, T. Yamano, S. Ito, N. Yasuda, K. Johmoto, H. Uekusa and N. Iwasawa, *Chem. Commun.*, 2014, **50**, 13683–13686.
- [24] J. T. A. Jones, T. Hasell, X. Wu, J. Bacsa, K. E. Jelfs, M. Schmidtmann, S. Y. Chong, D. J. Adams, A. Trewin, F. Schiffman, F. Cora, B. Slater, A. Steiner, G. M. Day and A. I. Cooper, *Nature*, 2011, 474, 367–371.
- [25] T. Mitra, X. Wu, J. T. A. Jones, K. E. Jelfs, D. J. Adams, A. Trewin, J. Bacsa, A. Steiner and A. I. Cooper, *Chem. Eur. J.*, 2011, **17**, 10235–10240.
- [26] P. Skowronek, B. Warżajtis, U. Rychlewska and J. Gawroński, Chem. Commun., 2013, 49, 2524–3.
- [27] A. G. Slater, M. A. Little, A. Pulido, S. Y. Chong, D. Holden, L. Chen, C. Morgan, X. Wu, G. Cheng, R. Clowes, M. E. Briggs, T. Hasell, K. E. Jelfs, G. M. Day and A. I. Cooper, *Nature Chem.*, 2016, 9, 17–25.
- [28] M. E. Briggs, K. E. Jelfs, S. Y. Chong and C. Lester, *Crystal Growth & Design*, 2013, 13, 4993–5000.
- [29] A. G. Slater, P. S. Reiss, A. Pulido, M. A. Little, D. L. Holden, L. Chen, S. Y. Chong, B. M. Alston, R. Clowes, M. Haranczyk, M. E. Briggs, T. Hasell, G. M. Day and A. I. Cooper, ACS Cent. Sci., 2017, 3, 734–742.
- [30] S. Jiang, J. Bacsa, X. Wu, J. T. A. Jones, R. Dawson, A. Trewin, D. J. Adams and A. I. Cooper, *Chem. Commun.*, 2011, 47, 8919–8922.
- [31] K. E. Jelfs, X. Wu, M. Schmidtmann, J. T. A. Jones, J. E. Warren, D. J. Adams and A. I. Cooper, Angew. Chem. Int. Ed., 2011, 50, 10653–10656.
- [32] T. Hasell, J. L. Culshaw, S. Y. Chong, M. Schmidtmann, M. A. Little, K. E. Jelfs, E. O. Pyzer-Knapp, H. Shepherd, D. J. Adams, G. M. Day and A. I. Cooper, J. Am. Chem. Soc., 2014, 136, 1438–1448.

- [33] S. Klotzbach and F. Beuerle, Angew. Chem. Int. Ed., 2015, 127, 10497–10502.
- [34] S. Klotzbach, T. Scherpf and F. Beuerle, Chem. Commun., 2014, 50, 12454–12457.
- [35] M. W. Schneider, H.-J. Siegfried Hauswald, R. Stoll and M. Mastalerz, Chem. Commun., 2012, 48, 9861–9863.