Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering.
This journal is © The Royal Society of Chemistry 2019

Supporting Information — Beyond heuristic analysis: Integration of process and working
fluid design for organic Rankine cycles

David H. Bowskill*, Uku Erik Tropp*¢, Smitha Gopinath?, George Jackson?, Amparo Galindo® and Claire S. Adjiman**
May 20, 2019

1 ORC process model equations

A summary of the core equations used in each case study are given below:

Teond.ou = Ti ¢))
Tevap,out = T3 )]
Py=Pys =P = Peopa 3)
T, = 75 (Py) )
Qour = (- (1, Pt) = (fraph” (T4, Ps) + (1 = frap) " (T4, P3))) (5)
Py =P; = Peyap (6)
T3 = T°(P3) + Aloxtent 7
Qin = 1i(h" (T3,P3) — h"(T», P2)) (8)
IF sV (T3, P3) < sV (T (Pys), Pas);

sV (T3, P3) = frap.ss” (T° (Pag), Pas) + (1= frap.s)s* (T° (Pag), Pas) ©)
Tty = Frapsh (T (Pis) Pas) + (1= fuaps (T (Piy), Piy) (10)

ELSE;
fraps =1 an
sV (T3,P3) = sV (Tys, Pyy) (12)
ht‘;/u/fs = h" (Tus, Pay) (13)

END
hgt;/,th%,&) . )
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V/L
IF hou/t < hV(Tsm (P4s)7P4s);

oL = Faph (T (Py), Py) + (1 = foap) W (T (Py), Py) (15)
ELSE;
fvap =1 (16)
ol =Y (T3, Py) 17)
END
Wour = ri(h” (T3, P3) — (foaph” (Ta, Py) + (1 — foap)h™(Ts, Py)) (18)

Additional equations for case studies 1 & 2
5" (Tag, Pog) = s (11, Py) (19)

hE(Tog, Pog) — E(Ty, Py)

WL (T, Py) — HL(Ty Py) 7 20)
Win = (W (T, Py) — KA (P, Th)) 21)
Py = Pog = Pevap (22)
Tyq = T (Pag) (23)
Mep(Tisin = Ths.a) = (R (T3, P3) = (s, Paa) 24)
Mep(Tis,in — Ths.o) = (" (T3, P3) — h* (T2, Py)) (25)

Additional equations for case study 3
=T (26)
n= |W0ut.+ Wi (28)

|Qin
1.1 ORC process constraints

Tevapou < TV (29)
Teond.ous > T" (30)
Teond.our 2 T + ATy, (€2))]
Fevap 2 Peond (32)
PTP <PY (33)
Poyap < PY? (34)



Pcond > PrL (35)

P
Peona = P (36)
foap = - (37)
Additional constraints for case studies 1 & 2
Ths,in = Tevap,out + AT win (38)
Ths,a = Toy + AT in (39)
Thsx,out = T + ATin (40)

2 Chemical feasibility constraints

The following equations describe the chemical feasibility constraints:

0 < n;, Vi (41)
Y ni—N*<0 (42)
7
nch, +ncoon +ncH,0H + NcH= =2 (43)
nc
neo < ncp, — —a2 44)
New,
neo < ncH, (45)
neo < 2ncH, (46)
ncoo +NCH=
neo < 1+ncp, —neo — N 47
a
ncy, +n +n.o+n
new— < 24N — CH, co}\?ub co0 t 1.0 48)
b
2ngp = ncg=+ncH,= (49)

Equation sets the constraint on the maximum number of groups in a molecule. Since only linear molecules are
considered, Equation sets the bounds on the number of end groups with a valency of 1. Equations (44)-(47) define
the the limits on the ether groups while Equations (48))-({49) ensure functional groups containing double bonds form a
feasible molecule.

3 Critical pressure evaluation

Thermophysical property evaluation is carried out using the gSAFT functionality in gPROMS. This routine does not
contain an implicitly built method for evaluating the critical properties of a fluid. To approximate the critical pressure
and temperature of a fluid a dynamic model was introduced in gPROMS. Here the pressure is incremented over time as in
Equation (50). Phase equilibrium between gaseous and liquid phases is ensured by Equation (51)). Finally, convergence
criteria is set when the ratio of gaseous and liquid volumes is equal to unity with some tolerance ¢ as in Equation (52)).
From numerical testing € was set to 0.21. Once the convergence criteria is met the final pressure is reported as the critical
pressure.

dP
== 1 (50)
uE (T, P) = (T, P) 51
v845(T, P)
Jliquid (T, P) Sl+e (52)

Due to the difficulty of numerical calculations close to the critical point this routine can be numerically unstable
and may fail in some cases. Fortunately due to recent advances in the DAEBDF numerical solver in gPROMS 5.1.1 the
above method has been applied successfully for all molecules containing up to 12 functional groups (i.e., 3,175 chemical
combinations).



4 Feasibility test gradients
4.1 TestO

Tests 0 & 1 of the algorithm are used to detect infeasible solutions to the algorithm and pass linearised constraints to
the master problem. In Test O the two constraints are formulated as follows:

TE-TV <0
PEO—PRY0 <0 (TO)
Where:
P — max{PX PLP.(n)}, (53)
B/ =min{P"" PV P.(n)}. (54)
T = max{TL, T,y (n) + AT, } (55)

For Test 0, it is highly unlikely (and in fact does not occur in our study) that the constraint on pressure will be violated
in Equations assuming that pressure bounds are chosen sensibly. The temperature bound may however be violated
if the working “fluid" is solid over the whole operating region. For this it is desirable to add additional constraints to the
master problem to prevent generation of these solutions.

If we formulate the constraint on melting temperature from Equations (T0) and as:

(T +ATy) —TY <0 (56)

T, TV — AT,
exp(Tmo)_exp( Tin0 ’") <0 7
m, m,

Finally using the correlation by Hukkerikar et al.'l:

This constraint is equivalent to:

q TU — AT,
Z(aini) —exp <T71) <0 (58)
i=1

m,0

Equation is linear in n; and can be included directly into the master problem. Therefore, the tests will only
eliminate molecules that are solid over the whole feasible region in the first iteration, while Equation will prevent
these working fluids from being generated. As a result, we do not calculate gradients of any constraints from Test 0
during the algorithm.

4.2 Test1l
In Test 1, the tests on the saturation behaviour of the fluid are enforced by Equations (T1):
TS(/I[(I,)"LO7 n) _ TU < 0
T — 7PV, n) <0 (T

With the upper and lower bounds on pressure set as:
P — max{P PLP.(n)}, (59

PY0 — min{PY° PUP.(n)}. (60)

Test 1 can then be partitioned into four equations shown below:

(Pt n)—TY <0 (61)
T (PLP.(n), n) —TY <0 (62)
T — 15 (PY n) <0 (63)
TR 154 (PYUP.(n), n) <0 (64)



All these constraints must be satisfied for a fluid to be feasible. By far the most common form of infeasibility in our
design space is due to Equation in that most fluids are not volatile enough to produce a vapour phase within process
operating bounds. Should Equation be violated, then gradients of the equation are calculated using forward finite
differences with respect to each element in the vector n. These finite differences do not take integer values, instead
a relaxation is enforced on n and small perturbations are taken. Care is particularly taken for finite differences with
respected both associating groups ncooy and ncpaon such that the perturbations are appropriately small to mitigate
numerical issues.

Equations and both have an additional indirect dependence on n through P.(n). Although gradients could
be taken with respect to these equations computational times would likely increase. Further, as these constraints are
rarely violated gradients are not taken with respect to those equations.

Finally, Equation is not defined for cases when PV > P.(n) and can cause numerical issues. For this reason
gradients with respect to Equation are also not calculated.

Therefore only linearised constraints of Equation are added to the master problem should a molecule violate
this constraint. Regardless a vast proportion of the failures are due to this constraint and little effectiveness is lost by the
algorithm through omission of the other constraints. If a molecule should violate any of Equations (62), or and
not then it will be removed from the search using an integer cut2.

5 Primal Problem formulation

The algorithm is initiated from a starting point represented by discrete variables n*, with the iteration counter set
to k = 0. After obtaining the pressure bounds from Test 2, the primal problem is optimised to find the best possible
performance of the working fluid n*. The continuous variable vector x is partitioned such that x = x(u,x’), where u
is a vector of independent continuous variables. The remaining variables can be calculated using equality constraints
h(x,n*) =0 such that ' = ' (u,n¥). Therefore, the primal problem is optimised with respect to continuous variables u.

f< = min f(un)
s.t. g(u, ¥ (u, n*), nF) <0
P <X (u, n¥) <V

uLguguU

P)

A value of the objective function f¥ is found at each iteration k. The upper bound on the objective function for the
problem (P1) is then updated such that fU8 = min{fV5, f*}.

5.1 Primal problem initialisation

To successfully implement the primal problem, proper initialisation is needed for each new working fluid to ensure
convergence. This is because poor initialisation of process variables far from any primal problem solution makes the
optimiser prone to failure even when the molecule itself is feasible. The calculation of equilibrium thermodynamic
properties such as entropy and enthalpy using the SAFT-y Mie equation of state can be particularly problematic when
temperature and pressure are initialised far from a feasible solution.

To improve the robustness of state calculations using temperature and pressure, P, and P, are initialised close to
the lower bound on pressure and all associated temperatures are initialised at at their corresponding saturation points. To
be precise, Prong = PO, Poyap = 1.1 x BE0, Ty = Tys = Ty = T (Pypg,n) and Tp = Toy = T3 = T (Pyyqp,n). All other variables
are set arbitrary values. This initialises all four states of the cycle sufficiently close to a solution of the equations h(x,n) =0.
Through rigorous testing, it was found that initialisation of all four states in this way leads to solver convergence for all
feasible molecules. Further, even for infeasible molecules, in all cases tested, the primal was successfully initialised even
though a solution is impossible.

Numerically, this type of initialisation is enforced by an additional model in gPROMS ModelBuilder 5.1.1.. Saved
variable sets from this model are then transferred to the primal problem to ensure its solution.

5.2 Primal problem gradients

After solving the primal problem, the objective function and constraints are linearised with respect to continuous and
relaxed discrete variables at the optimal point. The gradients are added to the master problem where a new molecule
is generated. If the primal problem is initiated but no solution can be found, then the objective function and linearised
constraints are taken at the point of initialisation.



6 Master Problem formulation

The master problem is used to generate a new molecule for evaluation in the feasibility tests and primal problem. The
master problem follows the original formulation used by Duran and Grossmann® as well as Fletcher and Leyffer® with
modifications applied specifically to aid in ORC working fluid design. In this proposed algorithm, the master problem is
modified to implement an augmented penalty framework with slack variables e; and ¢, as well as heuristics to guide
working fluid selection in the case of degeneracy.

The full formulation of the master problem is summarised by problem (M). Since each iteration may give different
outcomes (such as passing or failing the feasibility tests), various sets are defined to keep track of linearised constraints
that have come up across all iterations. The set F(¥) is used to save the iteration index / when the primal problem is
feasible. For the indices / € F(¥), the set AX) saves the indices (I,m), where m denotes the index of an active constraint
8, in the solution of the primal problem. If the a molecule fails Test 1, the information about all the active and violated
constraints are saved in the set A1¥). A1) contains the pairs of indices (I, j), where [ is the iteration number and ; is
the index of the active or violated constraint g, in Test 1. Finally, the indices of all molecules removed by an integer cut®
are stored in the set /C%) when a molecule has been generated for a second time by the algorithm, or PICY) when a
permanent integer is applied at the end of an outer iteration.

min 17 +0.001(cp/205.86 — Ah/44.47) + 1000(e1 +¢2)

s.t. f@D nD)y VT D) n—nD)+ V@D aD)u—ul) <n+e, VieF®
g2,m(u<1)7n<1)) +VZg2,m(u(1),n(1))[nfn(l)] +V1g2ym(u<l>,n<l))[ufu(l)] <er, YV (I,m) cA®)
g1, n)+ VI ;@ nD)n—n) <er, v (1)) € A1

e;,e020

uLguguU

Cn<d
n< U8 )

ME(1—y)+e <X <ln(p,')(n,- 7ng'))) <MYy, —g., Vieic®

yi€{0,1}, vieIlc®
M1 = y) + & T (In(pi) (= nD)) <MYy~ e, W1 € PICW)

y €{0,1}, viepic

4 TV — AT,
Z(a,-n,-) —exp (7'") <0
i=1

Tm,O

As can be seen the modified constraint on melting point given in Section[4.1]of this supporting information is included
in the master problem due to its linearity with n. This ensures that any new working fluids generated by the algorithm
won’t be solid over the entire operating domain.

When no primal problems have been solved, the value of 1 in the master problem takes the same value (an arbitrary
lower bound) for all master-problem feasible values of n. Given the vast search space, the master problem is very highly
degenerate. The MILP master problem solver usually yields the first-found feasible solution, which in turn depends on
the heuristics of the MILP solver. When the master problem is degenerate, the solution yielded by the MILP solver may or
may not be a good solution to the primal problem. We modified the objective to provide more information to the master
problem when degenerate®. To the conventional master problem objective, a new term is added which in effect is a novel
primal-heuristicZ. Some sources disagree on appropriate physico-chemical properties and their correlations with working
fluid performance, however here we arbitrarily choose the minimisation of ideal gas heat capacity ¢, (which typically
correlates strongly with liquid heat capacity) and the maximising of latent heat of vapourisation Ak of the working fluid.
The linear group contribution parameters proposed by Joback and Reid® are used for the calculation of these properties
and both are scaled appropriately. The heuristics appear in the objective function of the master problem with a weight of
0.001 such that the heuristics only have an appreciable affect on the algorithm when no objective function linearisations
have been formulated.

Without the use of slack variables it was initially discovered that the master problem would become infeasible (i.e.,
1 < fYB would be violated) and hence the algorithm would stop after approximately 2 primal evaluations. The use of
slack variables in an augmented penalty framework facilitates the additional exploration of the search space after which
a traditional OA will have converged. The slack variables are included in the objective function of the master problem



with a coefficient of 1000 to strongly favour having e;,e; = 0 until a traditional OA set-up would become infeasible as the
1 < fYB would no longer apply. This is necessary due to the high degree of non-convexity in the problem, and otherwise
the algorithm may converge without an in depth exploration of the search space.

6.1 Stopping Criteria

The master problem and the primal problem in conjunction with the feasibility tests are solved successively until
either of the stopping criteria are met. The arguments of the primal problem, # and n, coinciding with the best objective
function fUZ from all iterations are reported as the solution to the optimisation.

The traditional OA algorithm would terminate once the constraint n < fUZ can no longer be satisfied. With the aid of
the augmented penalty framework, the algorithm is terminated after three attempts to solve the primal problem are made
once either of the slack variables become non-zero. This ensures that a sufficient amount of the search space is explored
without a great deal of computational expense. To prevent divergent behaviour in the algorithm, a second stopping
criterion is imposed in tandem such that the algorithm is stopped when 20 unique molecules have been analysed either
in the feasibility tests or primal problem.

This stopping criteria is applied separately in each outer iteration to generate a new candidate molecule.

7 Physical Properties

Physical property analysis of all top performing working fluids in comparison to a reference set containing all feasible
molecules in each case study are shown on Figures and 3} The whiskers show the maximum and minimum values of
the reference set for each property, while the box shows the first and third quartile ranges as well as the median. The top
ten working fluids for each case study are marked explicitly on the Figures with diamonds. In addition the top performing
working fluid for each study id marked with a filled diamond; these correspond to propane, n-butane and pent-1,4-diene
for case studies 1, 2 and 3, respectively.

As discussed in the main paper, trends can be seen indicate desirable properties for working fluids. These trends can
be seen to be more significant particularly for case study 2. By considering the trend shown by the molecular weight
indicator for case study 2 we believe these trends are somewhat artificial due to the inclusion of large molecular weight
working fluids completely unsuitable for practical ORC design.

8 Optimal working fluid operating conditions

Optimal working fluid operating conditions for all feasible molecules in each case study can be found in the excel
sheet associated with this document — Supporting information Data.xlsx

9 Starting Points

Table [1| outlines the 20 starting molecules used to with the algorithm. Each of the molecules is represented with a
molecular code where each number signifies the occurrences of a functional group. The groups are given in the following
order: -CHs, -CHy-, -€0-, -cO-, -COO, -CH=, -COOH, -CH,OH and =CH,. For example, a molecule with a code 2-1-0-0-
0-0-0-0-0 corresponds to propane as it contains two CHg-groups and one -CHy-group.

The test results of each of the starting points are denoted as follows: 1 - tests passed, 2 - tests failed due to saturation
constraints, 3 - tests failed due to the melting point constraint.

The results of each starting point can be found in the associated excel document - Supporting_information_Data.xlsx



Table 1 Molecular starting points and test results

# Molecular code CS1 CS2 (CSs3
1 0-0-0-0-0-4-0-0-2 2 1 2
2 2-0-0-0-0-0-0-0-0 1 1 2
3 2-1-0-0-0-0-0-0-0 1 1 1
4 2-2-0-0-0-0-0-0-0 1 1 1
5 2-3-0-0-0-0-0-0-0 1 1 1
6 1-0-0-0-0-1-0-0-1 1 1 1
7 2-2-0-1-0-0-0-0-0 1 1 1
8 0-3-0-0-0-2-0-0-2 1 1 2
9 1-1-0-0-0-3-0-0-1 1 1 2
10 0-0-0-0-5-3-0-1-1 2 2 2
11  0-2-0-1-1-2-0-2-0 2 2 2
12  0-3-0-0-0-3-1-0-1 2 2 2
13  0-3-0-0-4-1-1-0-1 2 2 3
14 1-1-1-0-6-0-1-0-0 3 2 3
15 0-0-0-0-4-2-1-1-0 3 2 3
16 1-0-0-0-0-0-1-0-0 1 1 2
17 2-1-2-0-0-0-0-0-0 1 1 1
18 0-2-0-0-0-0-1-1-0 2 2 2
19 2-2-0-1-1-0-0-0-0 2 2 2
20 2-5-2-0-1-0-0-0-0 2 2 2

References
[1] A.S. Hukkerikar, B. Sarup, A. Ten Kate, J. Abildskov, G. Sin and R. Gani, Fluid Phase Equilibria, 2012, 321, 25-43.

[2] A.P. Samudra and N. V. Sahinidis, AIChE Journal, 2013, 59, 3686-3701.

[3] M. A. Duran and I. E. Grossmann, Mathematical programming, 1986, 36, 307-339.

[4] R.Fletcher and S. Leyffer, Mathematical programming, 1994, 66, 327-349.

[5] J.Viswanathan and I. E. Grossmann, Computers & Chemical Engineering, 1990, 14, 769-782.
[6] S. Gopinath, G. Jackson, A. Galindo and C. S. Adjiman, AIChE Journal, 2016, 62, 3484-3504.
[71 T. Berthold, Journal of Global Optimization, 2018, 70, 189-206.

[8] K. G. Joback and R. C. Reid, Chemical Engineering Communications, 1987, 57, 233-243.



80 T T T 1 1 —— o |
1 1 1 1 ] o 1
1 1 1 1 1 1
1 1 1 1 1 1
i l | i i l
%7 ! | ! ! ! |
~~ 1 1 1 1 1 1
o °
< | | l i i . i
| 40_ 1 — ol o |1 o o
00)0 i ° E o2 E OZOE i E
o 090 ;,’,
2 ;| : | = T & .
O 201 % gol ol & %) ol
> ol Y 1 o | 1 1 °
° 8 o OlD
“’ °9 I &\ ° 01 o0 | o 0d}) I 58
g o 2! el oo A K g 1 g
30 %8 1 1 1 AL
o i o ° &
= °§: g oo | ° ©, | ¥ %
1 1 %I 31 1 2% 1
g 20 _ o o o =) “ % °
- - 0c °o
RS S B 5 °! o o i o
= i i i o o i
= 40 : N N : : :
% - 1 1 1 % 1 O’ 1 1
i I * 1 o 1 2 I
Q | el o ol 1 1 1
i I i PO i I
-60 i l | i i l
i L T i
: | L — : |
_80 L 1 X 1 L L L] 1
XS @ ) & S > N
> . & . X $ X > P LD <L
= S \Q» oS ' 0\?\5 5 & & 00\ N & &S S
VS & & SR AR WL o oM
& AR VO @ O N < &
Q K X X NP ¢ N
® = & <~

Physical Property

Figure 1 A box plot showing the maximum, minimum, first and third quartiles and median percentage deviations of working fluid
properties from the mean of the reference set (cf. text) for case study 1. The data used to construct each box plot is shown on the
right of each plot: the optimal working fluid (propane) is marked with a filled diamond, the remaining 9 best working fluids are marked
with hollow diamonds and all other working fluids are marked with hollow circles.
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Figure 2 A box plot showing the maximum, minimum, first and third quartiles and median percentage deviations of working fluid
properties from the mean of the reference set (cf. text) for case study 2. The data used to construct each box plot is shown on the
right of each plot: the optimal working fluid (n-butane) is marked with a filled diamond, the remaining 9 best working fluids are marked
with hollow diamonds and all other working fluids are marked with hollow circles.
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Figure 3 A box plot showing the maximum, minimum, first and third quartiles and median percentage deviations of working fluid
properties from the mean of the reference set (cf. text) for case study 3. The data used to construct each box plot is shown on the
right of each plot: the optimal working fluid (pent-1,4-diene) is marked with a filled diamond, the remaining 9 best working fluids are
marked with hollow diamonds and all other working fluids are marked with hollow circles.
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