Mapping Mechanisms and Growth Regimes of Magnesium Electrodeposition at High Current Densities

Figure S1. A) XPS survey scan measured for detached Mg fractal deposits formed at a current density of 0.921 mA/cm2 from a 0.5M solution of MeMgCl in THF; High-resolution XPS spectra measured at B) Mg 2p; C) O 1s; D) C 1s regions; and E) high-resolution Cl 2p XPS spectrum. Spectral assignments are indicated for each of the deconvoluted lines.

Figure S2. Projections of 3D tomographic maps from soft-X-ray microscopy at the Mg K-edge acquired at tilt angles of A) 40°, B) 80°, and C) 120°.
Figure S3. Plots of voltage versus time for the electrodeposition of Mg from MeMgCl as a function of applied current density for electrodeposition reactions at A) 0.307, B) 0.921, and C) 1.54 mA/cm² constant current applied for 8 h in 0.5 M MeMgCl solutions in THF.

Figure S4. Plots of voltage versus time for the electrodeposition of Mg from MeMgCl as a function of concentration of electrolyte showing plots for reactions run with A) 0.25, B) 0.5, C) 1.0, D) 1.5, E) 2.0 M MeMgCl electrolyte solutions under a constant current of 0.921 mA/cm² applied for 24
Figure S5. Digital image of a dendrite deposited under 0.921 mA/cm² applied current density in a 1.5 M MeMgCl solution for 24 h.

Figure S6. A) XPS survey scan measured for detached Mg fractal deposits formed at a current density of 0.921 mA/cm² from a 0.5M solution of MeMgCl in THF with the addition of oleylamine; High-resolution XPS spectra measured at B) Mg 2p; C) O 1s; D) C 1s regions; E) high-resolution Cl 2p XPS spectrum; and F) N 1s. Spectral assignments are indicated for each of the deconvoluted lines.
Figure S7. Optical image acquired for a set of indents in the cross-section of a polished Mg dendrite grown in 0.5 M MeMgCl solutions under 0.921 mA/cm2 applied constant current for 24 h, displaying insignificant indentation pile-up.

Figure S8. Powder XRD patterns for Mg deposits electrodeposited at a current density of 0.921 mA/cm2 from 0.5M MeMgCl electrolyte solutions with the addition of dodecanethiol and oleylamine. The reflections can be indexed to metallic Mg with hexagonal close packing of atoms (PDF 35-0821).
Figure S9. A) XPS survey scan measured for detached Mg fractal deposits formed at a current density of 0.921 mA/cm2 from a 0.5M solution of MeMgCl in THF with the addition of dodecanethiol; High-resolution XPS spectra measured at B) Mg 2p; C) O 1s; D) C 1s regions; E) high-resolution Cl 2p XPS spectrum; and F) S 2p. Spectral assignments are indicated for each of the deconvoluted lines.

Figure S10. Digital images of an Mg ribbon and disk electrode as a function of time upon electrodeposition from a 0.5 M MeMgCl solution in THF under a 0.921 mA/cm2 applied current density held constant for 24 h.
Figure S11. A) Hypothetical phase diagram and charge-neutral plane for Mg(M)-MeMgCl-THF. B) Dendrite formed following initial seeding at the bottom center of the domain. C) Phase-field order parameters extracted along the blue line in (B). D) Comparison of the nonlinear phase-field model with a Butler-Volmer symmetric coefficient of $\alpha=0.5$ used in this study and Butler-Volmer coefficients reported by Viestfrid and co. workers1 for (0.25 M complex in THF) and for (0.25 M complex in (0.25 M Bu$_2$Mg + THF) solutions.

Phase-field modeling of dendritic growth. The model described here was developed based on the earlier work of Guyer et. al2, Bazant3, Chen et al4, and Yurkiv et al5. Primary deposition occurs through the reaction of M^{n+} cations in the electrolyte solution ($M^{n+} + e^-$) with electrons e^- at the surface of the electrode. In an isothermal and isobaric state, the total free energy of a heterogeneous system with constant volume V is given by:

$$ F^{tot}(\zeta, c_i, \nabla c_i, \psi) = \int_V \left[f^{chem} + f^{int} + f^{elec} + f^{noise} \right] dV $$

(S1)
where f_{chem}, f_{int}, f_{elec} and f_{noise} are the chemical, interfacial, electrical, and Langevin noise contributions respectively, given as:

$$f_{\text{chem}} = g(\bar{c}) + RT[\bar{c}_+ \ln(\bar{c}_+) + \bar{c}_- \ln(\bar{c}_-)]$$ \hspace{1cm} (S2)

$$f_{\text{int}} = \frac{1}{2} \nabla \kappa \cdot \nabla c$$ \hspace{1cm} (S3)

$$f_{\text{elec}} = \mathcal{F} \sum_i z_i c_i \psi$$ \hspace{1cm} (S4)

$$f_{\text{noise}} = A h'(\zeta) \chi$$ \hspace{1cm} (S5)

where $g(\bar{c}) = W \bar{c}^2(1 - \bar{c}^2) = W^2(1 - \bar{c}^2)$ is a double well potential function with W being the barrier height of transformation in between the equilibrium states of the electrode and electrolyte. The second term in Eq. (S2) is the entropic contribution of mixing ions where R is the ideal gas constant, and T is the operating temperature. f_{int} describes the interfacial contributions due to heterogeneous nature of the electrode-electrolyte interface where the anisotropic characteristics of this interface was taken into account by:

$$\kappa(\theta) = \kappa_0(1 + \delta \cos[j \theta - \theta_0])$$ \hspace{1cm} (S6)

where δ and j are the strength and mode of anisotropy, respectively; κ_0 is the interface energy gradient, θ and θ_0 are related to the angle between the normal vector of the surface and the reference axis. f_{elec} is the electrostatic energy density, where \mathcal{F} and z_i are the Faraday's constant and valence of species i, respectively. An additional phase-field variable was used to distinguish the states of the electrolyte ($\zeta = 0$) and electrode ($\zeta = 1$), which continuously changes in the interface region. f_{noise} denotes the Langevin noise, which was applied to the interface region by using χ, which is a quasi-random number between [-1,1], and A is the amplitude of the fluctuation. The evolution of the non-conserved, conserved, and electrostatic fields were prescribed by the following equations, respectively:

$$\frac{\partial \zeta}{\partial t} = -L_\sigma (g'(\zeta) - \kappa(\theta) \nabla^2 \zeta) - \Gamma$$ \hspace{1cm} (S7)

$$\frac{\partial c_+}{\partial t} = \nabla \left[D_{\text{eff}} \nabla c_+ + \frac{D_{\text{eff}} c_+}{RT} \mathcal{F} \nabla \psi \right] - \frac{c_+}{c_0} \frac{\partial \zeta}{\partial t}$$ \hspace{1cm} (S8)

$$\nabla [\sigma_{\text{eff}} \nabla \psi] = n \mathcal{F} c_s \frac{\partial \zeta}{\partial t}$$ \hspace{1cm} (S9)
where L_α is the interface mobility, and Γ is the electrodeposition rate defined by:

$$\Gamma = L_\eta i_0 h'(\zeta) \left\{ e^{\frac{(1-\alpha)nF\eta_a}{RT}} - c_+ e^{\frac{(\alpha)nF\eta_a}{RT}} \right\}$$

where L_η is the reaction related kinetic coefficient, i_0 is the exchange current density, h' is the derivative of the interpolation function $h(\zeta) = \zeta^3(10 - 15\zeta + 6\zeta^2)$, α is the anodic/cathodic symmetric charge-transfer coefficient (assumed to be 0.5 in this study ($0 < \alpha < 1$)), and η_a is the overpotential. D_{eff} and σ_{eff} are the interdiffusion and conductivity, respectively defined over the domain by means of the interpolation function $h(\zeta)$. The source term in Eq. (S9) is related to reaction rate.

<table>
<thead>
<tr>
<th>Table S1. List of boundary conditions used for equations 7-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eq. (7)</td>
</tr>
<tr>
<td>Top</td>
</tr>
<tr>
<td>Bottom</td>
</tr>
<tr>
<td>Left/Right</td>
</tr>
</tbody>
</table>

References: