Supporting information

Large-scale synthesis of carbon dots/TiO$_2$ nanocomposites for photocatalytic color switching

Aiwu Wang$^{1,2,+}$, Xufen Xiao$^{2,+}$, Cangtao Zhou1,3,4, Fucong Lyu2, Li Fu5, Chundong Wang6*, Shuangchen Ruan1,3

1Center for Advanced Material Diagnostic Technology, Shenzhen Technology University, Shenzhen 518118, People’s Republic of China

2Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, People’s Republic of China

3College of Applied Technology, Shenzhen University, Shenzhen 518060, People’s Republic of China

4Center for Applied Physics and Technology, HEDPS, and School of Physics, Peking University, Beijing 100871, People’s Republic of China

5College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People’s Republic of China

6School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China

*Corresponding author E-mail: apcdwang@hust.edu.cn
Figure S1 XPS O 1s spectrum of CDs/TiO$_2$ nanocomposites.
Figure S2. UV-vis spectra of the CDs/TiO$_2$ nanocomposites under recoloration process under visible light irradiation.
Figure S3. FTIR of obtained nitrogen rich carbon dots.
Figure S4. UV-vis spectra of P25 under recoloration process under UV-visible light irradiation.