Electronic Supplementary Information

Synthesis of Au@TiO$_2$ core-shell nanoparticles with tunable structures for plasmon-enhanced photocatalysis

Tian-Ming Chen,a Ge-Yang Xu,a He Ren,a Hua Zhang,a Zhong-Qun Tian,a Jian-Feng Li,*ab

aMOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, Xiamen University, Xiamen 361005, China. bShenzhen Research Institute of Xiamen University, Shenzhen 518000, China

*Corresponding author: Li@xmu.edu.cn

Additional data and figures

Fig. S1 UV-vis absorption spectra of Au NRs@TiO$_2$ NPs with different TiO$_2$ shell thickness.

The result shows that a red shift is observed when the TiO$_2$ shell becomes thicker. The redshift of the plasmon band after TiO$_2$ coating is caused by the increase of the refractive index of the surrounding medium. However, a visible light with a wavelength ranging from 420 to more than
700 nm has been used in the photocatalytic reaction. Such an excitation light covers the plasmon band of all these core-shell nanoparticles. Therefore, we believe that the influence of the light-absorbing property of the core-shell nanoparticles with different shell thicknesses on the photocatalytic performance is negligible.

Fig.S2 Photocatalytic degradation of methylene blue by TiO$_2$ and annealed Au@TiO$_2$ nanoparticles with a shell thickness of 50 nm under visible light.

We prepare Au@TiO$_2$ core-shell nanoparticles with a shell thickness of 50 nm. With such a thick shell, the SPR effect of Au is almost negligible, and the core-shell nanoparticles should display similar properties with that of pure TiO$_2$. Therefore, the photodegradation efficiencies of TiO$_2$ before and after thermal treatment were compared using the Au@TiO$_2$-50 nm nanoparticles. As shown in Fig. S2, the activity is only slightly improved after the thermal treatment (from ~2% to ~3%). This means that the improved performance of Au@TiO$_2$ does not result from the structural transformation of TiO$_2$. Instead, we believe that the annealing process facilitates the transportation of hot electrons to the crystalline TiO$_2$ shell.