Supporting Information

Three dimensional Ni₃S₂ nanorod arrays as multifunctional electrodes for electrochemical energy storage and conversion applications

Kexin Cui, Jincheng Fan,*, Songyang Li, Moukaila Fatiya Khadidja, Jianghong Wu, Mingyu Wang, Jianxin Lai, Hongguang Jin, Wenbin Luo, Zisheng Chao

College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China

College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
Figure S1. SEM images of the Ni$_3$S$_2$ nanorods on Ni foam with different magnifications for S-100-16 (a and b) and S-140-16 (c and d), (a) and (c) ×10k; (b) and (d) ×30k.
Figure S2. EDS elemental analysis of Ni$_3$S$_2$ nanorods on Ni foam. Only Ni and S peaks were observed, indicating the purity of the synthesized Ni$_3$S$_2$ nanorods.
Figure S3. (a) CV curves obtained for S-120-16 electrode at different scan rates; (b) GCD profiles obtained for S-120-16 electrode at different current density; (c) The areal capacitance calculated from the discharge process at different current density.
Figure S4. (a) CV curves obtained for S-140-16 electrode at different scan rates; (b) GCD profiles obtained for S-140-16 electrode at different current density; (c) The areal capacitance calculated from the discharge process at different current density; (d) Nyquist plots of S-140-16.
Figure S5. (a) CV curves obtained for S-100-16 electrode at different scan rates; (b) GCD profiles obtained for S-100-16 electrode at different current density; (c) The areal capacitance calculated from the discharge process at different current density; (d) Nyquist plots of S-100-16.
Figure S6. LSV curves recorded in 1.0 M KOH at a scan rate of 5 mV s⁻¹ on S-140-16. (a) LSV curve for HER, (b) The corresponding Tafel plots for HER; (c) LSV curve for OER, (d) The corresponding Tafel plots for OER.
Figure S7. Comparison of overpotential values to achieve 10 mA cm\(^{-2}\) between Ni\(_3\)S\(_2\) nanorod arrays (S-120-16) and the other recently reported HER catalysts, Numbers are references cited. The overpotential of Ni\(_3\)S\(_2\) nanorod arrays was much lower than those of the other reported HER catalysts.
Figure S8. Comparison of overpotential values to achieve 10 mA cm\(^{-2}\) between Ni\(_3\)S\(_2\) nanorod arrays (S-120-16) and the other recently reported OER catalysts. Numbers are references cited. The overpotential of Ni\(_3\)S\(_2\) nanorod arrays was much lower than those of the other reported OER catalysts.