A Highly Reliable, Impervious and Sustainable Triboelectric Nanogenerator as a Zero-power Consuming Active Pressure Sensor

1Venkateswaran Vivekananthan, 1,2Arunkumar Chandrasekhar, 1Nagamalleswara Rao Alluri, 1Yuvasree Purusothaman and 1Sang-Jae Kim*

1Nanomaterials and Systems Laboratory, Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea

2Nanosensors and Nanoenergy Lab, Department of Sensors and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, India

Mailing address:

1Prof. Sang-Jae Kim*, Venkateswaran Vivekananthan, Nagamalleswara Rao Alluri, & Yuvasree Purusothaman

Nanomaterials & System Lab, Department of Mechatronics Engineering,
Engineering Building No:-4, D-130,
Jeju National University, Ara-1-Dong, Jeju-Si, Jeju-Do
Jeju-63243, South Korea.

Email Id: kimsangji@jejunu.ac.kr, vivek@jejunu.ac.kr, alluri@jejunu.ac.kr, yuvasreep@jejunu.ac.kr, arunecebe@jejunu.ac.kr.

*Corresponding author (Prof. Sang-Jae Kim)

2Arunkumar Chandrasekhar

Nanosensors and Nanoenergy Lab,
Department of Sensors and Biomedical Technology,
School of Electronics Engineering,
Vellore Institute of Technology, Vellore, India

Email Id: Arunkumar.c@vit.ac.in
Figure S1- Triboelectric series chart showing the contact materials used in WR-SE-TENG fabrication
Figure S2- Circuit used for capacitor charging analysis using WR-SE-TENG

Figure S3- Homemade humidity test setup
Figure S4 - Charge quantity of the silicone elastomer film

Figure S5 - Stability test of the SE-TENG device
Supporting Information

Video S1- Demonstrating the working of WR-SE-TENG in water bath

Video S2- Bio-mechanical energy harvesting using hand tapping

Video S3- Bio-mechanical energy harvesting using foot tapping