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S1 Experimental part 

S1.1 Areal density and iron concentration measurements 

To measure the areal density, 𝜌𝑎, and iron concentration in the single-walled carbon nanotube 

(SWCNT) films we collected a thick film with the size of 21.0𝑥29.7 𝑐𝑚2 and 50% of optical 

transmittance (Figure S1a). The film (Figure S1b) was crumpled up and placed in the 𝐴𝑙2𝑂3 

crucible. The film total mass of 3.47 𝑚𝑔 was measured by thermal analyzer (NETZSCH STA 

449F3). After SWCNTs were heated to 1400 ℃ in the air atmosphere, the mass of 0.84 𝑚𝑔 was 

measured for the remaining 𝐹𝑒2𝑂3 (Figure S1c). 

 

Figure S1. Photographs of a) a thick SWCNT film with 50% of optical transmittance collected on 

an A4 size filter, b) a crumpled up thick SWCNT film. c) remaining 𝐹𝑒2𝑂3 in the 𝐴𝑙2𝑂3 crucible 

after the sample treatment to 1400 ℃. 

Therefore, the weight concentration of iron in our films can be calculated to be 

about 16.94 % and the areal density of the film with the 50% transmittance, 𝜌𝑎0.5
, is equal to 

5.5 𝜇𝑔/𝑐𝑚2, while the areal density for the film with arbitrary transmittance can be defined as:  
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𝜌𝑎 = 𝜌𝑎0.5

log10(𝜉)

log10(0.5)
,    (S1) 

where 𝜉 is the film optical transmittance at 550 nm. 

S1.2 Purification by annealing in vacuum 

Purification of SWCNT films was performed in a vacuum chamber (less than 10-4 Torr) with 

a Joule heating by applying 6 − 20 W/cm2 (varied depending on the sample thickness) of the 

electric power with a direct current, until the samples start to glow brightly (Figure S2).  

 

Figure S2. Photographs of a) a vacuum chamber. b) SWCNT-60% sample placed in the vacuum 

chamber. c) the SWCNT-60% under Joule heating at 25 W/cm2 of applied power.  

 To prove iron particle evaporation from the films of SWCNTs we carried out 

transmission electron microscopy observation of the samples before and after purification by 

vacuum annealing (Fig. S3). 
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Figure S3. Typical TEM images of SWCNT films of 90% transmittance a) before and b) after 

vacuum annealing. 

 S1.3 Methods and description of experiments 

The experimental setup consisted of two parts: sound generation and its detection (see Figure 

2c in the main text). Both parts were controlled via Hewlett-Packard Interface Bus (GPIB) by a 

laptop with software written in the python programming language. In the experiments, the 

program made a frequency sweep of the current from 0.5 kHz to 50.5 kHz with step of 1 kHz. 

The electric input power was adjusted to obtain ~80oC of average temperature on the surface of 

the sample, where the temperature was monitored with FLIR T650-sc. For a certain frequency 

from the frequency range the generation process was the following: 1) sine wave was generated 

by a generator (Keysight Agilent 33250A); 2) the wave was amplified by an amplifier (TREK  

PZD350A M/S); 3) the sine signal reached the sample, induced Joule heating and, consequently, 

sound propagation, while the oscilloscope (Tektronix DPO4104B-L) controlled the signal shape; 

4) a multimeter (Keithley 2000) measured the voltage on the sample, while another multimeter 
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(Keithley 2000) measured current through the sample by measuring the voltage drop across a 

series-connected high power 1 Ohm resistor. The detection process was  following: 1) the signal 

was received with a microphone (B&K 4138-A-015) (free-fields corrections were taken into 

account) and amplified with a low-noise preamplifier (Stanford research systems SR 560), which 

also filtered undesirable low and high frequencies; 2) the second harmonic of the original signal 

was measured with a lock-in amplifier (Stanford research systems SR 830), which parameters 

were controlled by the program for optimal measurements. The transmittance of the samples was 

measured with a UV-vis-NIR spectrophotometer (Lambda 1050).  
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S2 Theoretical part 
 

The sound pressure for the point source case when the sound wavelengths much larger then 

the thermophone size was obtained in Ref. 1. It is extended here for the case of a source of finite 

size in comparison to the sound wavelength. For instance, in the samples with the size of 

1x1 cm2 the frequency of the transition from large to small wavelengths is 16 kHz.  

The thermal and acoustic parts of the problem can be solved separately at low frequencies 

𝑓 ≪ 𝑣𝑠
2/𝛼𝑇 , where 𝑓 is the frequency of the sound, 𝑣𝑠 is the speed of sound, 𝛼𝑇 is the thermal 

diffusivity1. The logical sequence of our theory derivation is presented in Figure S4. Briefly, the 

oscillation in time heating results in the oscillating air pressure at the surface of the sample, 

which then becomes converted into the propagating sound waves. One then needs to take into 

account the diffraction effects to obtain the measured sound pressure. 

 

Figure S4. Diagram showing the principal steps in thermoacoustic theory derivation. 
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S2.1 Temperature oscillations  

In thermophones, temperature oscillations in time lead to a sound propagation. In order to find 

an amplitude of the temperature oscillations, 𝑇𝑜𝑠𝑐, we consider an electrically conducting sample 

of thickness, 2ℎ, and surface area, 𝑆. The sample is surrouned by air (Figure S5). When an 

alternating current with a frequency of 𝑓/2 passes through the sample, it causes oscillations in 

the power converted into the Joules heating of the sample: 

𝑃(𝑡) = 2𝑃0 sin2(𝜋𝑓𝑡) = 𝑃0 − 𝑃0cos(2𝜋𝑓𝑡),   (S2) 

where 𝑃0 is the time average electrical input power. The first (time independent) term in Eq. 

S2, 𝑃0, induces Joule heating, which increases the temperature of the sample from the air 

temperature 𝑇0 to higher value 𝑇𝑎𝑣𝑔. The second (time dependent) term in Eq. S2 oscillating part 

of electrical power, 𝑃0cos(2𝜋𝑓𝑡), leads to periodic temperature oscillations with an amplitude 

𝑇𝑜𝑠𝑐, which we determine below (see Movie).  

 

Figure S5. Heating illustration of the sample with a thickness of 2h, which is placed in air. 
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To find 𝑇𝑜𝑠𝑐, we consider the thermal conductivity equation  

𝜌𝑔𝐶𝑔
𝜕𝛿𝑇(𝑡,𝑥)

𝜕𝑡
= 𝜘Δ𝛿𝑇(𝑡, 𝑥),    (S3) 

where 𝑡 is a time, 𝑥 is the axis of the coordinate in the direction perpendicular to the sample 

surface, 𝜌𝑔 is the air density, 𝐶𝑔 is the heat capacity of air per unit mass, and 𝜘 is the thermal 

conductivity of air.  

We look for the solution of the form  

𝛿𝑇(𝑡, 𝑥) = 𝑇𝑜𝑠𝑐𝑒𝑖(𝑞(𝑥−ℎ)−𝜔𝑡),     (S4) 

where 𝑞 is the wave number, 𝜔 = 2𝜋𝑓 is the angular frequency. Substituting Eq. S4 into Eq. S3 

we obtain 𝑞 = −
(1−𝑖)

√2
√

 𝜔𝜌𝑔𝐶𝑔

𝜘
. We also define the thermal diffusion length 

𝑙(𝜔) ≡
1

Im 𝑞
= √

2𝜘

 𝜔𝜌𝑔𝐶𝑔
.    (S5) 

The amplitude of temperature oscillations can now be found from the heat balance equation 

𝑃(𝑡)

𝑆
 =  𝐶ℎ

𝜕𝑇(𝑡,𝑥)

𝜕𝑡
− 𝜘

𝜕𝑇(𝑡,𝑥)

𝜕𝑥
    (S6) 

where  𝐶ℎ is the heat capacity of the sample per unit area. It is defined as 𝐶ℎ = 𝜌ℎℎ𝐶 , where 𝜌ℎis 

the density of the sample, and 𝐶 is the heat capacity of the sample per unit mass. Eq. S5 neglects 

the effects of convection, black body radiation and heat conduction to the electrical contacts. 

Substituting Eq. S4 into Eq. S6 we obtain  

𝑇𝑜𝑠𝑐 =
𝑖𝑃0

𝑆(𝑞𝜘+𝜔𝐶ℎ)
.    (S7) 
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In order to verify Eq. S7 and approximations used above, we arranged numerical calculations in 

COMSOL software. The thermal conductivity equation of the used numerical model took into 

account convection effect introduced in heat flux module of COMSOL by condition of natural 

convection on a vertical wall. The results of the calculations of temperature amplitude, 𝑇𝑜𝑠𝑐, with 

COMSOL and Eq. S7 for different values of the heat capacity per unit area found to be in a very 

good agreement, which prove the applicability of the approximations used in derivation of Eq. 

S7 (Figure S6). 

 

Figure S6. Dependence of temperature amplitude on the applied alternating curren frequency for 

films of different heat capacity per unit area. The dashed lines correspond to Eq. S7., while the 

dots were calculated using COMSOL software by a finite element method. 

S2.2 Density and velocity oscillations near the sample surface  

The oscillations of air temperature near the surface of the sample lead to the oscillations of 

pressure 𝑝, and density 𝜌, within a layer of characteristic length 𝑙(𝜔). In general, the density 
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variation 𝜌, caused by changes in pressure 𝛿𝑝, and temperature 𝛿𝑇, can be expressed in the linear 

approximation as:  

𝛿𝜌 =  𝜌𝑔(𝛽𝛿𝑝 −  𝛼𝛿𝑇),    (S8) 

where 𝛼 is the thermal expansion coefficient, 𝛽 is the compressibility. The latter two are defined 

as 𝛼 ≡  −
1

𝜌𝑔
(

𝜕𝜌𝑔

𝜕𝑇
)

𝑝
 and 𝛽 ≡  

1

𝜌𝑔
(

𝜕𝜌0

𝜕𝑝
)

𝑇
. Since, for the ideal gas, 𝑝 =  𝜌𝑅𝑇, Eq. S8 takes the 

form  

𝛿𝜌 =  𝜌𝑔 (
𝛿𝑝

𝑝0
 −  

𝛿𝑇

𝑇𝑎𝑣𝑔
).     (S9) 

In Eq. S8 the term, 𝛿𝑝/𝑝0, can be neglected, because it is several orders of magnitude smaller 

than 𝛿𝑇/𝑇𝑎𝑣𝑔. The reason for this smallness is that the pressure adjusts to the change of external 

conditions ballistically with characteristic time 𝑙/𝑣𝑠 , while temperature adjusts diffusively on a 

much slower timescale 1/𝜔. This smallness is also the subject to the final consistency check 

after the amplitude of the pressure oscillations is obtained. Eq. S9 than translates into the 

following time dependent relation for the density oscillations 

𝛿𝜌(𝑡, 𝑥) =  −𝜌𝑔 ( 
𝛿𝑇(𝑡,𝑥)

𝑇𝑎𝑣𝑔
).    (S10) 

The above density oscillations can now be converted into the oscillations of the gas velocity field 

𝑢(𝑡, 𝑥). The velocity oscillations can be obtained with the help of the continuity equation 

𝜕𝜌

𝜕𝑡
 =  −𝜌𝑔

𝜕𝑢

𝜕𝑥
.     (S11) 

The substitution of Eq. S10 and Eq. S7 into Eq. S11 than gives 

𝜕𝑢

𝜕𝑥
=

−𝑖𝜔𝜌𝑔𝛿𝑇(𝑡,𝑥)

𝑇𝑎𝑣𝑔
.    (S12) 
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Integrating Eq. 12 with respect to 𝑥, we obtain the asymptotic value of the amplitude of air 

velocity oscillations outside of the diffusive heating layer near the surface  

𝑢0 =  
−𝑖𝜔

𝑇𝑎𝑣𝑔
∫ 𝛿𝑇(𝑡, 𝑥)𝑑𝑥 =

∞

ℎ
 

𝜔𝑇𝑜𝑠𝑐

𝑞𝑇𝑎𝑣𝑔
,   (S13) 

where the origin of the 𝑥-axis is defined in Figure S5. 

S2.3 Pressure oscillations near the sample surface 

The sound pressure can now be found from the velocity field using the Euler equation for a 

compressible fluid without dissipation: 

𝜕𝑢

𝜕𝑡
+ (𝑢𝛻)𝑢 = −

1

𝜌𝑔
𝛻𝑝.    (S14) 

Let us now consider a solution of the Euler equation in a semi-open spherical geometry, namely, 

outside of the spherical boundary of radius 𝑎. For small variations of the density and pressure, 

and for ≪ 𝑣𝑠 , the boundary condition on the spherical surface is  

𝑑𝑢

𝑑𝑡
 |

𝑟=𝑎
=  −

1

𝜌𝑔

𝑑𝑝

𝑑𝑟
 |

𝑟=𝑎
.    (S15) 

We look for the solution of the form  

𝑝 = 𝐴
𝑒𝑖(𝑘𝑟−𝜔𝑡)

𝑟
 ,    (S16) 

where 𝑟 is the distance from the center of the sphere (𝑟 ≥ 𝑎) and 𝐴 is a constant. In Eq. 16 in 

order to simplify subsequent notations, we switch from 𝛿𝑝 to 𝑝 to represent small deviation from 

the equilibrium pressure 𝑝0.  

Substituting 
𝑑𝑢

𝑑𝑡
 |

𝑟=𝑎
= 𝑖𝜔𝑢0 and Eq. 16 into Eq. 15, we obtain  
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−𝑖𝜔𝑢0 =
𝐴

𝜌𝑔
(

𝑖𝑘𝑎−1

𝑎2
),    (S17) 

which in turn gives  

 |𝐴| =  
𝜔𝑢0𝜌𝑔𝑎2

√(𝑘𝑎)2+1
.    (S18) 

Eq. S18 applies to both small (𝑘𝑎 ≪ 1) and large (𝑘𝑎 ≫ 1) thermophones. After the velocity 

field from Eq. S13 and 𝑘 = 2𝜋𝑓/𝑣𝑠 are substituted in Eq. S18 and the result is further substituted 

in Eq. 16, we obtain the root-mean squared sound pressure of a spherical transducer.  

𝑝𝑟𝑚𝑠(𝑓, 𝑟)  =  
𝑓𝑃0

2√2𝐶𝑔𝑇0𝑟 
 

1

√(
2𝜋𝑎𝑓

𝑣𝑠
)

2
+1

1

√2𝜒2(𝑓)+2𝜒(𝑓)+1
,  (S19) 

where 𝜒(𝑓) =
ℎ𝜌ℎ𝐶ℎ

𝑙(2𝜋𝑓)𝜌𝑔𝐶𝑔
. Here 𝑙(2𝜋𝑓) is the function of frequency defined by Eq. S5.  

S2.4 Flat transducers 

The result for the spherical transducer given by Eq. S19 can now help us to obtain the sound 

pressure for a flat transducer of an arbitrary shape. In general, there are three regimes of the flat-

transducer operation, which depend on the ratio between the sound wavelength and the 

characteristic sample size: (i) the regime of a point source when the wavelength much larger than 

the sample size, (ii) the regime of a large source when the wavelength much smaller than the 

sample size and (iii) the intermediate regime of finite source when the wavelength comparable 

with the sample size.  

For a point source the result for the spherical transducer given by Eq. S19 applies entirely, 

using effective radius  
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𝑎 = √𝑆/4𝜋,     (S20) 

where 𝑆 is the double-sided surface area of the flat transducer. 

For a large source the isotropic spherical pressure front, given by Eq. S19, must be modified to 

account for the directivity of the sound emission as described below. However, in this case, the 

value of the pressure for the spherical transducer near the spherical surface, 𝑝𝑟𝑚𝑠(𝑓, 𝑎) can still 

be used to obtain the pressure of the flat transducer near the flat surface again with the effective 

radius given by Eq. S20.  

In the intermediate regime, strictly speaking, one needs to perform the complete numerical 

simulation of the coupled thermoacoustic equations, and we have indeed done this using 

COMSOL software as described below. However, we have found that, at least for the 

transducers of square shape, the intermediate regime is very well described by the preceding 

prescription for large transducers in combination with the directivity gain calculation described 

below. 

S2.5 Directivity gain of a flat transducer 

Directivity gain function is the ratio of intensity in a certain direction to the isotropically 

averaged intensity  

𝐺(𝑟, 𝜑, 𝜃) =
𝐼(𝑟,𝜑,𝜃)

1

4𝜋
 ∫ ∫ 𝐼(𝑟,𝜑′,𝜃′) sin 𝜃′𝑑𝜑′𝑑𝜃′𝜋

0
2𝜋

0

,   (S21) 

where I(𝑟, 𝜑, 𝜃) is the sound intensity, φ and θ are the azimuth and polar angles. The intensity 

distribution on the sphere of radius, 𝑟, surround the sample is proportional to the square of the 

sound pressure 𝑝2(r, φ, θ).  
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In order to find 𝑝(r, φ, θ) we used Huygens-Fresnel principle, i.e. each point on the 

transducers surface was assumed to be a point source of spherical waves, 𝑝𝑖 = 𝐴𝑖
𝑒−𝑖𝑘𝑟𝑖

𝑟𝑖
 (Fig. S7). 

The intensity of this point sources was chosen using the result for the spherical transducer and 

Eq. S19 as described in the preceding section. The results for the directivity gain calculation in 

front of the sample is presented in Fig. S8. 

 

Figure S7. Spherical surface used for calculation of the directivity gain function. 

The calculation of directivity gain of Eq. S21 by Huygens-Fresnel principle includes the 

transition from the near to the far field with an increase of the sphere radius. In order to verify 

these numerical results we compared them with the analytical result for the directivity of a square 

emitter in the far field:  

𝐷(𝜑, 𝜃)  =  sinc(
𝑘 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜑 𝐿

2
) sinc(

𝑘 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜑 𝐿

2
),   (S22) 

where sinc(𝑥) ≡
sin(𝑥)

𝑥
, L is the edge lengths of the square transducer. The directivity is than 

calculated as:  
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𝐺(𝑟, 𝜑, 𝜃)  =  
𝐷2(𝜑,𝜃) 

1

4𝜋
∫ ∫ 𝐷2(𝜑′,𝜃′) 𝑠𝑖𝑛 𝜃′ 𝑑𝜑′𝑑𝜗′𝜋

0
2𝜋

0

.    (S23) 

As seen in Fig. S8 the analytical result of Eq. 23 is in excellent agreement with the numerical 

calculation for large distances from the source.  

 

Figure S8. Dependence of the directivity gain function on frequency. Solid lines represent 

directivity gain G(r,0,0) for different sphere radius calculated using Eq. S21 and Huygens-

Fresnel principle. Dots line is a far field calculation of directivity gain G(r, 0, 0) performed in 

accordance with Eq. S23  

S2.6 COMSOL modeling 

In order to confirm the theoretical approach based on the application of Eqs. S19 and S20 

together with numerical Huygens-Fresnel calculation of the directivity gain function, we 

modeled our system using the COMSOL software. In our modeling, we used the acoustics 

module of COMSOL in a spherical region of space with the radius of 3 cm, which had a 



 17 

bordering layer where we applied the “perfectly matched layer” routine. Within the above 

spherical region, we had a smaller rectangular region of sizes 1.25 cm x 1.25 cm x 0.2 cm which 

contained a square emitter of size 1 cm x 1 cm. In this rectangular region the acoustic module 

implemented thermoviscous acoustic simulations of the linearized Novier-Stocks equation, while 

in the entire spherical region it implemented acoustic pressure simulations using Helmholtz 

equations. Input for the simulations included temperature oscillation on the surface of 1𝑥1 𝑐𝑚2 

described by Eq. S7. The sketch of the overall simulation is shown in Figure S9.   

 

Figure S9. The principal geometry of the COMSOL modeling, including thermoviscous 

acoustic module, pressure acoustic module and perfectly matched layer. 

The discretization mesh had at least 30 finite elements per wavelength, which led to 

significant calculation complexity at high frequencies. To overcome this problem, we used 

symmetric boundary conditions and directly modeled one-fourth of the space shown in the 

Figure S9. In the simulations we used the generalized minimal residual (GMRES) method with 

the parallel direct sparse solver (PARDISO) as a direct preconditioner. 
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