Supporting Information

Growth of 2H Stacked WSe$_2$ Bilayers on Sapphire

Ali Han1, Areej Aljarb1, Sheng Liu2, Peng Li1, Chun Ma1, Fei Xue1, Sergei Lopatin3, Chih-Wen Yang1, Jing-Kai Huang.1,4, Yi Wan1, Xixiang Zhang1, Kuo-Wei Huang1, Qihua Xiong5, Vincent Tung1,6*, Thomas D. Anthopoulos1*, Lain-Jong Li1,4*

1Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia

2Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371

3King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, 23955-6900, Kingdom of Saudi Arabia

4School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.

5Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371. MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, Singapore 639798. NOVITAS, Nanoelectronics Center of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798

6Molecular Foundry Division, Lawrence Berkeley National Lab, Berkeley 94720, USA

* E-mails: thomas.anthopoulos@kaust.edu.sa; vincent.tung@kaust.edu.sa; lance.li@kaust.edu.sa;
Figure S1. Schematic illustration of the CVD setup and the relative position between WO$_3$, Se and substrate. The distance between Se powder and WO$_3$ powder is ~25 cm.
Figure S2. Optical images for the WSe$_2$ growth by CVD method. The mass amount of WO$_3$ is 0.3g, while the amount of Se powder is increased. The high-purity of H$_2$/Ar is as the carrier gas with a fixed flow rate of 5/65 sccm/sccm. The T$_{Se}$ (temperature of Se) is maintained at 250 °C while T$_{WO_3}$ (the temperature of WO$_3$) is kept at 895 °C. The growth pressure of the furnace is 10 torr for the whole CVD growth. The growth time is 15 mins.
Figure S3. Optical images for the WSe$_2$ growth by CVD method. The mass amount of WO$_3$ is 0.3 g. The high-purity of H$_2$/Ar is as the carrier gas with a fixed flow rate of 5/65 sccm/sccm. a-b, The amount of Se powder is 5.5 g, $T_{\text{Se}} = 250$ °C and $T_{\text{WO}_3} = 890$ °C; c-d, The amount of Se powder is 5.0 g, $T_{\text{Se}} = 260$ °C and $T_{\text{WO}_3} = 895$ °C; e-f, The amount of Se powder is 5.5 g, $T_{\text{Se}} = 250$ °C and $T_{\text{WO}_3} = 900$ °C.
Figure S4. a, Left: optical micrograph of cloud bilayer WSe₂ crystal with monolayer WSe₂ as reference; Right: The corresponding SHG mapping intensity obtained by pixel-to-pixel spatial scanning on the crystals in Fig. S4a; b, The SH signal spectra of different layer number; c, Optical micrograph of irregular bilayer WSe₂ crystal with monolayer WSe₂ as reference; d, The corresponding SHG mapping intensity obtained by pixel-to-pixel spatial scanning on the crystals in Fig. S4c; e, The SH signal spectra of different layer number.
Figure S5. Low-frequency Raman spectra of bilayer WSe$_2$ crystals for 2H and 3R stacking configurations with different morphologies.

Figure S6 a, Low-magnification HAADF-STEM image of top-view bilayer WSe$_2$ sample; b-c, elemental mapping of the region (green frame) in Fig.a.
Figure S7. a, AFM topographic image of the monolayer WSe$_2$ grain boundary crystal with bilayer nuclei in the center area; b, The zoom-in AFM topographic image of area 1, indicative of initial WSe$_2$ bilayer nuclei aligned growth on the atomic steps. Scale bars: a, 2 µm; b, 100 nm.
Figure S8. a-b, AFM topographic images of monolayer WSe$_2$ crystal with bilayer nuclei in different areas. The inset height profile is ~0.8 nm, indicating a thickness of WSe$_2$ monolayer. The zoom-in AFM image in Fig. R1b shows WSe$_2$ bilayer nuclei initial growth on the atomic steps of sapphire; c-d, AFM topographic images of monolayer WSe$_2$ crystal with bilayer nuclei in different areas. The inset height profile is ~0.76 nm, indicating a thickness of WSe$_2$ monolayer. The zoom-in AFM image in Fig. R1d shows WSe$_2$ bilayer nuclei initial growth on the atomic steps of sapphire.
Figure S9. a, AFM topographic image of sapphire surface after high-temperature treatment (1050 °C in H₂/Ar for 15 mins); b, the corresponding cross-section height profile of the atomic steps along the vertical step direction in Fig. S7a; c, AFM topographic image of sapphire surface after high-temperature treatment (1050 °C in air for 60 mins); d, the corresponding cross-section height profile of the atomic steps along the vertical step direction in Fig. S7c. Scale bars: a, 100 nm; c, 100 nm.
Figure S10. a, AFM topographic image of one WSe$_2$ crystal. The inset height profile was ~0.8 nm, indicating a monolayer thickness; b, The zoom-in AFM image in Fig. S8a. And the image showed irregular atomic steps on bare sapphire surface without any pre-treatment. In contrast, the apparently periodic atomic steps were shown after covering monolayer WSe$_2$; c, The selected area for the roughness calculation of bare sapphire surface (300 nm x 300 nm); d, The selected area for the average roughness calculation of sapphire surface with monolayer WSe$_2$ covering (300 nm x 300 nm). Scale bars: a, 2 µm; b, 200 nm; c, 2 µm; d, 200 nm.
Figure S11. a, Optical micrograph of bilayer/trilayer WSe$_2$ crystals as-grown on c-plane sapphire substrate; b, The Raman spectra measurements for bilayer (red) and trilayer (orange) WSe$_2$ crystals.
Figure S12. AFM topographic images of three representative bilayer WSe$_2$ crystals as-grown on sapphire surface. a, The bilayer WSe$_2$ crystal with irregular morphology. The inset height profiles were both ~0.8 nm, indicating a bilayer thickness in the left part and a monolayer thickness in the right part of the WSe$_2$ crystal; b, The zoom-in AFM image showed the bilayer WSe$_2$ nuclei growth orientation following the atomic steps; c, the bilayer WSe$_2$ crystal with truncated triangle morphology. The inset height profile demonstrated a bilayer thickness of WSe$_2$ crystal; d, The zoom-in AFM image showed bilayer WSe$_2$ nuclei growth orientation following the atomic steps; e, The bilayer WSe$_2$ crystal with grain boundary. The inset height profile demonstrated a bilayer thickness of WSe$_2$; f, The zoom-in AFM image showed bilayer WSe$_2$ nuclei growth orientation following the atomic steps. Scale bars: a, 2 µm; b, 200 nm; c, 1 µm; d, 200 nm; e, 1 µm; f, 100 nm.
<table>
<thead>
<tr>
<th>WSe₂ crystals</th>
<th>Sapphire Roughness</th>
<th>Monolayer Roughness</th>
<th>Bilayer Roughness</th>
<th>Trilayer Roughness</th>
<th>Sapphire Roughness (1050 °C)¹</th>
<th>Sapphire Roughness (1050 °C)²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sapphire (Fig. S7a)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.056 nm</td>
</tr>
<tr>
<td>Sapphire (Fig. S7c)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.060 nm</td>
</tr>
<tr>
<td>Crystal 1 (Fig. 2b)</td>
<td>-</td>
<td>0.070 nm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crystal 2 (Fig. 2d)</td>
<td>0.109 nm</td>
<td>0.073 nm</td>
<td>0.068 nm</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crystal 3 (Fig. 3b)</td>
<td>0.129 nm</td>
<td>0.094 nm</td>
<td>0.097 nm</td>
<td>0.076 nm</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crystal 4 (Fig. S8b)</td>
<td>0.148 nm</td>
<td>0.056 nm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crystal 5 (Fig. S10b)</td>
<td>0.110 nm</td>
<td>0.077 nm</td>
<td>0.082 nm</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crystal 6 (Fig. S10d)</td>
<td>0.125 nm</td>
<td>0.081 nm</td>
<td>0.073 nm</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crystal 7 (Fig. S10f)</td>
<td>-</td>
<td>0.075 nm</td>
<td>0.086 nm</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

¹The as-supplied sapphire was annealed in the H₂/Ar for 15 mins;
²The as-supplied sapphire was annealed in the air for 60 mins.
Figure S13. **a.** The Raman spectra measurements for WSe\(_2\) monolayer and bilayer crystals before and after device fabrication on c-plane sapphire substrate; **b.** The PL spectra measurements for WSe\(_2\) monolayer and bilayer crystals before and after device fabrication on c-plane sapphire substrate.
Figure S14. a, I_{ds} as a function of V_g for monolayer device with two terminal. I_{ds} as a function of V_g for bilayer device with two terminal; b, I_{ds} as a function of V_g for monolayer device. I_{ds} as a function of V_g for bilayer device. $C_g = 5.0 \ \mu F/cm^2$; c, I_{ds} as a function of V_{gs} for monolayer/bilayer device. The subthreshold slopes of monolayer and bilayer crystals were measured to be 229 and 201 mV/dec, respectively.