Supporting Information

Luminescent metal-organic frameworks with 2-(4-pyridyl)-terephthalic acid ligand for detection of acetone

Fengqin An, Chengcheng Zhang, Lijuan Duan, Xiangyu Liu,* Zheng Wang, Xiaoyong Jin,* Weiming Song

State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China

These authors contributed equally to this work.

Contents

Table S1 Selected bond lengths [Å] and bond angles [°] for 1-3
Table S2 Detection limits of some MOFs used for fluorescent sensing of acetone.
Fig. S1 IR spectra of 1 (a), 2 (b) and 3 (c)
Fig. S2 PXRD patterns of 1 (a), 2 (b) and 3 (c)
Fig. S3 TG curves for 1 (a), 2 (b) and 3 (c)
Fig. S4 Solid-state fluorescence spectra of H₂pta and compounds 1 (a), 2 (b) and 3 (c)
Fig. S5 Fluorescent intensities (λ_ex = 277 nm) of 3 upon the solutions of acetone and different normal solvents (1mL solvents + 1mL acetone)

*Corresponding author

Dr. Xiangyu Liu
Tel.: +86-951-2062004
Fax: +86-951-2062860
E-mail: xiangyuli432@126.com
Table S1 Selected bond lengths [Å] and bond angles [°] for 1-3

<table>
<thead>
<tr>
<th>Compound 1</th>
<th>Zn(1)-O(1)</th>
<th>1.9576(17)</th>
<th>Zn(1)-O(1)W</th>
<th>1.991(18)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zn(1)-O(3)#2</td>
<td>1.9574(19)</td>
<td>Zn(1)-N(1)#1</td>
<td>2.041(2)</td>
</tr>
<tr>
<td></td>
<td>Zn(1)-C(8)#2</td>
<td>2.552(3)</td>
<td>N(1)-Zn(1)#3</td>
<td>2.041(2)</td>
</tr>
<tr>
<td></td>
<td>Zn(1)-O(4)</td>
<td>2.5306(20)</td>
<td>N(1)-C(11)</td>
<td>1.347(3)</td>
</tr>
<tr>
<td></td>
<td>N(1)-C(12)</td>
<td>1.344(3)</td>
<td>O(3)-Zn(1)#4</td>
<td>1.9575(19)</td>
</tr>
<tr>
<td></td>
<td>O(3)-C(8)</td>
<td>1.276(3)</td>
<td>O(2)-C(1)</td>
<td>1.245(3)</td>
</tr>
<tr>
<td></td>
<td>C(8)-Zn(1)#4</td>
<td>2.552(3)</td>
<td>O(4)-C(8)</td>
<td>1.238(4)</td>
</tr>
<tr>
<td></td>
<td>Zn(1)-Zn(1)</td>
<td>10.5561(5)</td>
<td>O(4)-C(5)</td>
<td>1.392(4)</td>
</tr>
<tr>
<td></td>
<td>O(1)-Zn(1)-O(1)</td>
<td>101.81(8)</td>
<td>O(1)-Zn(1)-N(1)#1</td>
<td>100.89(8)</td>
</tr>
<tr>
<td></td>
<td>O(1)-Zn(1)-C(8)#2</td>
<td>134.32(8)</td>
<td>O(1)-Zn(1)-N(1)#1</td>
<td>104.54(8)</td>
</tr>
<tr>
<td></td>
<td>O(1)-Zn(1)-O(4)#2</td>
<td>106.31(8)</td>
<td>N(1)-Zn(1)-C(8)#2</td>
<td>105.85(8)</td>
</tr>
<tr>
<td></td>
<td>O(3)-Zn(1)-O(1)</td>
<td>105.20(8)</td>
<td>O(3)-Zn(1)-O(1)</td>
<td>124.08(8)</td>
</tr>
<tr>
<td></td>
<td>O(3)-Zn(1)-N(1)#1</td>
<td>116.83(8)</td>
<td>O(3)-Zn(1)-N(1)#1</td>
<td>29.25(9)</td>
</tr>
<tr>
<td></td>
<td>C(1)-Zn(1)-N(1)</td>
<td>110.75(16)</td>
<td>C(1)-Zn(1)-N(1)</td>
<td>118.37(17)</td>
</tr>
<tr>
<td></td>
<td>C(12)-N(1)-Zn(1)#3</td>
<td>123.58(17)</td>
<td>C(8)-Zn(1)#4</td>
<td>102.19(17)</td>
</tr>
<tr>
<td></td>
<td>O(3)-C(8)-Zn(1)#4</td>
<td>48.56(13)</td>
<td>O(4)-C(8)-Zn(1)#4</td>
<td>74.93(15)</td>
</tr>
</tbody>
</table>

#1 3/2+x,1/2-y,1/2+z; #2 -1/2-x,1/2+y,1/2-z; #3 -3/2+x,1/2-y,1/2+z; #4 -1/2-x,1/2+y,1/2-z

<table>
<thead>
<tr>
<th>Compound 2</th>
<th>Zn(1)-O(1)</th>
<th>2.579(3)</th>
<th>Zn(1)-O(2)</th>
<th>1.958(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zn(1)-O(3)#1</td>
<td>1.976(2)</td>
<td>Zn(1)-O(4)#2</td>
<td>1.966(2)</td>
</tr>
<tr>
<td></td>
<td>Zn(1)-N(1)#3</td>
<td>2.065(3)</td>
<td>Zn(1)-C(1)</td>
<td>2.581(3)</td>
</tr>
<tr>
<td></td>
<td>O(1)-C(1)</td>
<td>1.227(5)</td>
<td>O(2)-C(1)</td>
<td>1.285(4)</td>
</tr>
<tr>
<td></td>
<td>O(3)-Zn(1)#4</td>
<td>1.976(2)</td>
<td>O(3)-C(8)</td>
<td>1.260(4)</td>
</tr>
<tr>
<td></td>
<td>O(4)-Zn(1)#2</td>
<td>1.996(2)</td>
<td>O(4)-C(8)</td>
<td>1.249(4)</td>
</tr>
<tr>
<td></td>
<td>N(1)-Zn(1)#5</td>
<td>2.065(3)</td>
<td>N(1)-C(11)</td>
<td>1.347(4)</td>
</tr>
<tr>
<td></td>
<td>N(1)-C(12)</td>
<td>1.337(5)</td>
<td>C(1)-C(2)</td>
<td>1.513(5)</td>
</tr>
<tr>
<td></td>
<td>Zn(1)-Zn(1)</td>
<td>4.7737(7)</td>
<td>C(2)-C(3)</td>
<td>1.387(5)</td>
</tr>
<tr>
<td></td>
<td>O(1)-Zn(1)-C(1)</td>
<td>27.51(10)</td>
<td>O(2)-Zn(1)-O(1)</td>
<td>56.37(9)</td>
</tr>
<tr>
<td></td>
<td>O(2)-Zn(1)-O(3)</td>
<td>125.07(10)</td>
<td>O(2)-Zn(1)-O(4)</td>
<td>124.54(10)</td>
</tr>
<tr>
<td></td>
<td>O(2)-Zn(1)-N(1)</td>
<td>102.61(11)</td>
<td>O(2)-Zn(1)-C(1)</td>
<td>28.94(12)</td>
</tr>
<tr>
<td></td>
<td>O(3)-Zn(1)-O(1)</td>
<td>104.26(9)</td>
<td>O(3)-Zn(1)-N(1)</td>
<td>94.90(10)</td>
</tr>
<tr>
<td></td>
<td>O(3)-Zn(1)-C(1)</td>
<td>11.90(10)</td>
<td>O(4)-Zn(1)-O(1)</td>
<td>88.37(9)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
<td>Bond</td>
<td>Angle (°)</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>----------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>O(4)-Zn(1)-O(3)</td>
<td>102.68(10)</td>
<td>O(4)-Zn(1)-N(1)</td>
<td>99.24(11)</td>
<td></td>
</tr>
<tr>
<td>O(4)-Zn(1)-C(1)</td>
<td>106.14(10)</td>
<td>N(1)-Zn(1)-O(1)</td>
<td>157.35(9)</td>
<td></td>
</tr>
<tr>
<td>N(1)-Zn(1)-C(1)</td>
<td>130.70(11)</td>
<td>C(1)-O(1)-Zn(1)</td>
<td>76.3(2)</td>
<td></td>
</tr>
</tbody>
</table>

#1 1/2+x,1/2+y,1/2+z; #2 -x,-y,1-z; #3 1/2+x,1/2+y,1/2+z; #4 1/2+x,1/2-y,1/2+z; #5 1/2+x,1/2+y,1/2+z

Compound 3

<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1)-C(11)</td>
<td>1.335(3)</td>
<td>N(1)-C(12)</td>
<td>1.352(3)</td>
</tr>
<tr>
<td>N(1)-Cd(1)#1</td>
<td>2.297(2)</td>
<td>Cd(1)-O(4)#2</td>
<td>2.2897(18)</td>
</tr>
<tr>
<td>Cd(1)-N(1)#2</td>
<td>2.297(2)</td>
<td>Cd(1)-O(1A)#4</td>
<td>2.3436(19)</td>
</tr>
<tr>
<td>Cd(1)-O(3)#2</td>
<td>2.3299(18)</td>
<td>Cd(1)-O(1)</td>
<td>2.3107(18)</td>
</tr>
<tr>
<td>Cd(1)-O(2B)#5</td>
<td>2.4878(18)</td>
<td>Cd(1)-O(2)#4</td>
<td>2.5774(19)</td>
</tr>
<tr>
<td>Cd(1)-C(8)#2</td>
<td>2.6414(3)</td>
<td>O(1A)-Cd(1)#6</td>
<td>2.3107(18)</td>
</tr>
<tr>
<td>C(1)-O(2)</td>
<td>1.246(3)</td>
<td>C(1)-O(1)</td>
<td>1.275(3)</td>
</tr>
<tr>
<td>C(11)-N(1)-Cd(1)#1</td>
<td>126.67(18)</td>
<td>C(12)-N(1)-Cd(1)#1</td>
<td>115.64(17)</td>
</tr>
<tr>
<td>O(4)#2-Cd(1)-N(1)#2</td>
<td>148.17(7)</td>
<td>O(4)#2-Cd(1)-O(1)#4</td>
<td>120.19(6)</td>
</tr>
<tr>
<td>N(1)#3-Cd(1)-O(1)#4</td>
<td>85.87(7)</td>
<td>O(4)#2-Cd(1)-O(3)#2</td>
<td>57.28(6)</td>
</tr>
<tr>
<td>N(1)#3-Cd(1)-O(3)#2</td>
<td>90.97(7)</td>
<td>O(1)#4-Cd(1)-O(3)#2</td>
<td>150.67(6)</td>
</tr>
<tr>
<td>O(4)#2-Cd(1)-O(1)</td>
<td>90.32(6)</td>
<td>N(1)#3-Cd(1)-O(1)</td>
<td>91.43(7)</td>
</tr>
<tr>
<td>O(1)#4-Cd(1)-O(1)</td>
<td>120.00(5)</td>
<td>O(3)#2-Cd(1)-O(1)</td>
<td>89.19(6)</td>
</tr>
<tr>
<td>O(4)#2-Cd(1)-O(2)#5</td>
<td>84.66(6)</td>
<td>N(1)#5-Cd(1)-O(2)#5</td>
<td>88.32(7)</td>
</tr>
<tr>
<td>O(1)#4-Cd(1)-O(2)#5</td>
<td>69.97(6)</td>
<td>O(3)#2-Cd(1)-O(2)#5</td>
<td>80.80(6)</td>
</tr>
<tr>
<td>O(1)#4-Cd(1)-O(2)#5</td>
<td>169.98(6)</td>
<td>O(4)#2-Cd(1)-O(2)#4</td>
<td>115.80(6)</td>
</tr>
<tr>
<td>N(1)#5-Cd(1)-O(2)#4</td>
<td>94.17(7)</td>
<td>O(1)#4-Cd(1)-O(2)#4</td>
<td>52.65(6)</td>
</tr>
<tr>
<td>O(3)#2-Cd(1)-O(2)#4</td>
<td>156.61(6)</td>
<td>O(1)-Cd(1)-O(2)#4</td>
<td>67.90(6)</td>
</tr>
<tr>
<td>O(2)#5-Cd(1)-O(2)#4</td>
<td>122.11(5)</td>
<td>O(4)#2-Cd(1)-C(8)#2</td>
<td>28.95(7)</td>
</tr>
<tr>
<td>N(1)#5-Cd(1)-C(8)#2</td>
<td>119.27(8)</td>
<td>O(1)#4-Cd(1)-C(8)#2</td>
<td>141.79(7)</td>
</tr>
<tr>
<td>O(3)#2-Cd(1)-C(8)#2</td>
<td>28.32(7)</td>
<td>O(1)-Cd(1)-C(8)#2</td>
<td>89.65(7)</td>
</tr>
<tr>
<td>O(2)#5-Cd(1)-C(8)#2</td>
<td>81.75(7)</td>
<td>O(2)#4-Cd(1)-C(8)#2</td>
<td>140.63(7)</td>
</tr>
</tbody>
</table>

#1 1/2+x,1/2+y,1/2-z; #2 -x,-y,1-z; #3 -1/2+x,1/2+y,1/2-z; #4 1/2+x,1/2-y,1/2-z; #5 1/2+x,1/2+y,1/2-z;
#6 3/2,x,1/2+y,1/2-z; #7 +x,1+y,z; #7 +x,1+y,z
Table S2: Detection limits of some MOFs used for fluorescent sensing of acetone.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Detection limit</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Zn(L)(bpdc)]·1.6H$_2$O</td>
<td>0.0478 vol% (478 ppm)</td>
<td>32</td>
</tr>
<tr>
<td>[Cdz(L)(Hbptc)$_2$]</td>
<td>0.0465 vol% (465 ppm)</td>
<td>32</td>
</tr>
<tr>
<td>[Cd(Tipb)(mta)]·(DMF)$_x$(H$_2$O)$_y$</td>
<td>0.075 vol% (750 ppm)</td>
<td>33</td>
</tr>
<tr>
<td>[{Cd$_3$(L)(H$_2$O)$_2$(DMF)$_2$}]$_n$</td>
<td>1.0 vol% (10000 ppm)</td>
<td>34</td>
</tr>
<tr>
<td>[{Cd$_z$(L)(dib)]$_y$</td>
<td>2.0 vol% (20000 ppm)</td>
<td>34</td>
</tr>
<tr>
<td>[Eu$_2$(m$_2$-pzdc)(m$_4$-pzdc)(m$_2$-ox)(H$_2$O)$_4$]</td>
<td>5.75 vol% (57500 ppm)</td>
<td>35</td>
</tr>
<tr>
<td>[Cd$_3$(L)$_2$(BTB)$_2$(H$_2$O)]·DMF·H$_2$O</td>
<td>0.122 vol% (1220 ppm)</td>
<td>36</td>
</tr>
<tr>
<td>[Zn$_2$(TPC4A)(DMF)(H$_2$O)$_4$·3H$_2$O</td>
<td>5 vol% (50000 ppm)</td>
<td>37</td>
</tr>
<tr>
<td>[Zn(2,5-PDC)(H$_2$O)$_2$]·H$_2$O</td>
<td>0.0055 vol% (55 ppm)</td>
<td>38</td>
</tr>
<tr>
<td>[Eu(TTB)(H$_2$O)$_2$·solvent]$_n$</td>
<td>0.3 vol% (3000 ppm)</td>
<td>39</td>
</tr>
<tr>
<td>{[Cd(pta)]·H$_2$O}$_n$</td>
<td>0.0825 vol% (825 ppm)</td>
<td>This work</td>
</tr>
</tbody>
</table>

Fig. S1 IR spectra of 1 (a), 2 (b) and 3 (c).
Fig. S2 PXRD patterns of 1 (a), 2 (b) and 3 (c).

Fig. S3 TG curves for 1 (a), 2 (b) and 3 (c).
Fig. S4 Solid-state fluorescence spectra of H$_2$pta and compounds 1 (a), 2 (b) and 3 (c)

Fig. S5 Fluorescent intensities ($\lambda_{ex} = 277$ nm) of 3 upon the solutions of acetone and different normal solvents (1mL solvents : 1mL acetone)