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Figure S1. Atomic packing for the cubic phase of T[Fe(CN)sNO].xH,O, T = Fe, Co, Ni. This
subseries of cubic metal nitroprussides has a porous framework formed by three types o
cavities. The large sphere corresponds to the largest cavity due to vacancies for the building
block, [Fe(CN)sNO]. For Fe and Co, the orthorhombic structure (Pnma) is also possible (see
Figure S2).

Figure S2. Atomic packing for orthorhombic metal nitroprussides, T[Fe(CN)sNO] with T =
Mn, Fe, Co, Zn, Cd. For Fe and Co the cubic (Fm3m phase is also possible (Figure S1).




Figure S3: Atomic packing within the unit cell for 2D copper nitroprusside,
Cu(H20)2[Fe(CN)sNO].

Figure S4: Atomic packing within the unit cell anhydrous copper nitroprusside,
Cu[Fe(CN)sNO]. This material has a 3D framework where the copper atom appears with a
square-base pyramidal coordination.



Figure S6: Framework of silver nitroprusside and coordination environments for the
involved metals (Fe and Ag). In the structure, there are two types silver atoms (Agl and

Ag2) at a distance of 3.165(3) A. The NO group remains unlinked at its O end.
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Figure S7: IR spectra for: (Left) sodium ferrocyanide and sodium nitroprusside; (Right)
ferrous nitroprusside (cubic phase) and zinc(2+) nitroprusside (orthorhombic phase).
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Figure S8: TG curve recorded under a nitrogen atmosphere for silver nitroprusside. Inset:

Normalized IR spectra of the evolved gases on the sample heating.
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Figure S9: TG curve recorded under a nitrogen atmosphere for mercury (2+) nitroprusside
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Figure S10: TG curve recorded under a nitrogen atmosphere for divalent transition metal
nitroprussides. The weight lost observed below 100 °C corresponds to the evolution of

water molecules. Then, the resulting anhydrous solids show certain structural stability.
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Figure S11. N 1s spectral region for the subseries Ag,[Fe(CN)sNO] and T[Fe(CN)sNO] with T
=Z7n, Cd, Hg. Indicated are the N 1s peak (shaded peak in green) for the metal cyanide minor
fraction resulting from the sample degradation under its interaction with the X-ray beam.
For Hg at least three N 1s peaks were resolved, in accordance with the crystal structure of
this compound [21]. The assignment of the N 1s peak corresponding to the simple metal

cyanides, is supported by the study of these compounds as pure phases (see below).
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Figure S12: N 1s, Cu 2p and Ag 3d5/2 spectral regions for CuCN and AgCN. For both

compounds a minor fraction of oxidized species for the metal were identified.

Table S1: N 1s and Metal binding energy (in eV) from the XPS spectra of AgCN, CuCN and

Zn/CN);

Metal cyanide N1scn N1scn surf T re-mc* Metal Mimp satellite
AgCN 398.1 399.2 403.7 932.5 934 -
CuCN 398 399.2 - 367.9 369.1 938.3

Zn(CN), 398.3 399.7 - 1021.1 - -
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Figure S13: N 1s and Zn 2p3/2 spectral regions for Zn(CN),. The Zn 2p3/2 shown a significant
broadening, which was ascribed to the presence of different coordination environment for

the Zn atom in the crystal structure of this coordination polymer, ...NC-Zn-CN..., ...NC-Zn-

NC..., ...CN-Zn-NC...
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Figure S14. Spectral profile for Hg 4f7/2 core level in Hg(2+) nitroprusside. The Auger lines

for Hg(2+) must be observed in the 1380 -1412 eV spectral region. The used X-ray source

was AlKa, with a work energy window limited up to 1400 eV, and in sequence, without

possibility for the Hg Auger lines recording.
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Figure S15. Spectral region for Mn 2p3/2 core level in Mn(2+) nitroprusside. The observed
XPS spectrum corresponds to Mn(2+). This was confirmed by the spectrum corresponding

to Mn 3s core level peaks (Inset)
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Figure S16. Spectral region for Fe 2p3/2 core level spectrum in Fe(2+) nitroprusside. The

observed XPS spectrum corresponds to a superposition of peaks from low spin Fe(ll), high

spin Fe(2+) and metallic iron (FeP). Inset: N 1s spectral region
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Figure S17. Spectral region for Co 2p3/2 and Ni 2p3/2 core level spectra in Co(2+) and Ni(2+)

nitroprussides. These spectra have a complex structure related to the appearance of

multiple splitting for these two cations. The satellite peaks at high energy provide conclusive

clue of their nature as presence of divalent Co(2+) and Ni(2+) cations. The peak located at

860 eV for the sample of Ni nitroprusside remains unassigned.
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Figure S18. Spectral region for Cu 2p3/2 core level spectrum in Cu (2+) nitroprusside. In
addition to the copper (2+) atom in copper nitroprusside, reduced species of copper (+) as

copper (+) cyanide, CuCN, and Cu® were identified.
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Figure S19. N 1s spectral region for the subseries T[Fe(CN)sNO] with T = Mn, Co, Ni, Cu. For
Cu, CuCN is formed during the sample degradation under its interaction with the X-ray beam

(see Figure S11).
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Figure S20: Molecular energy

adapted from Reference 46
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