Supplementry Information

Copper Fluorapatite assisted synthesis of new 1,2,3-triazoles bearing benzothiazolyl moiety and their antibacterial and anticancer activities

Sambhaji T. Dhumal, a Amarsinh R. Deshmukh, a Kiran R. Kharat, b Bhaskar R. Sathe, a Santosh S. Chavan, c Ramrao A. Mane a *

a Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, India.
b Centre for Advanced Life Sciences, Deogiri College, Aurangabad- 431005, India.
c Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495 (Japan).

*Corresponding Author: manera2011@gmail.com (Dr. Ramrao A. Mane)

Contents:

General information.. 2
General procedure for the synthesis 1,2,3-triazole..2
Spectral data of synthesized 1,2,3-triazoles ..3
Copies of 1H NMR, 13C NMR, IR, and HRMS ... 9
General

All reagents and solvents were obtained from commercial suppliers and used without further purification. The Copper fluorapatite were prepared according to reported procedures and prepared catalyst was tested by one example with standard reaction condition of published paper. All the various azides were synthesized from the reported procedures. Reactions were monitored by thin layer chromatography (TLC) on silica gel plates (GF 254) using UV light to visualize the course of the reactions. 1H NMR spectra and 13C NMR spectra were respectively recorded at 300 MHz and 100 MHz spectrometer using CDCl$_3$ and DMSO-d_6 as solvent at room temperature. Chemical shifts (δ) are reported in ppm with TMS as internal standard. Abbreviations for signal couplings are: s, singlet; d, doublet; t, triplet; m, multiplet. Routine monitoring of reaction was performed by TLC using 0.25 mm E. Merck precoated silica gel TLC plates (60 F254).

Experimental

4.1.1 Synthesis of Benzothiazolylphenoxy methyl alkyne (3)

A mixture of 4-(benzo[d]thiazol-2-yl)phenol (1) (0.0044 mol, 1 gm) and propargyl bromide (0.0048 mol, 0.52 gm) (2) was dissolved in DMF (10 ml) and to this solution K$_2$CO$_3$ (0.0088 mol, 1.22 gm) was added. The reaction mass was stirred at room temperature for 2h. The progress of the reaction was monitored by TLC. After 2 h, the reaction mass was poured on ice cold water. The off white solid obtained was filtered, washed with water and crystallized from ethanol.

Yield: 74 %, M.P.: 122-124°C; Off White Solid; IR (KBr) ν cm$^{-1}$: 3274 (Aromatic C-H stretching), 2127 (C C stretching), 1601 (C=C stretching) and 1241(C-O stretching); 1H NMR (300 MHz, CDCl$_3$) δ ppm = 2.57 (s, 1H, Alkynyl-CH), 4.77 (s, 2H, OCH$_2$) and 7.06-8.08 (m, 8H, merged peaks, Ar-H).; 13C NMR (100 MHz, CDCl$_3$) δ ppm = 55.78, 75.93, 77.86, 115.17, 121.42, 122.80, 124.78, 126.13, 127.15, 128.97, 134.78, 154.08, 159.62, 167.49; HRMS (ESI) calcd. for C$_{16}$H$_{11}$NOS [M+H]$^+$: 266.0595; found 266.0630.

4.1.2 General procedure for the synthesis of compounds (5a-t)

Benzothiazolyl phenoxymethyl alkyne (3) (0.0004 mol, 0.1 gm) and various azides (4a-t) (0.0004 mol, 0.047 gm) were dissolved in DCM (5 ml). To this stirred solution CuFAP (50 mg) and triethyl amine (0.0004 mol, 0.056 ml) were added and stirring was continued at rt. The progress of the reaction was monitored by TLC. After stirring for 1h, reaction mixture
was diluted with 10 ml DCM followed by filtration to recover the catalyst. The filtrate was concentrated in vacuo to get the crude product, which was further purified by crystallization to obtain 1,2,3-triazole product.

4.1.2.1 2-(4-((1-Phenyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5a)
Yield: 94%, M.P.: 168-171°C; White Solid; IR (KBr) ν cm⁻¹: 3273 (Aromatic C-H stretching), 1599 (C=O stretching) 1466 (N-N stretching), 1400 cm⁻¹ (N=N stretching); ¹H NMR (300 MHz, CDCl₃) δ ppm = 5.40 (s, 2H, CH₂), 7.13-8.10 (m, 14H, merged signals, 13 Ar-H and triazolyl-H); ¹³C NMR (100 MHz, CDCl₃) δ ppm = 62.31, 115.41, 120.82, 121.28, 121.72, 123.08, 125.07, 126.43, 127.29, 129.15, 129.40, 129.99, 135.09, 137.12, 154.39, 160.62, 167.80; HRMS (ESI)⁺ calcd. for C₂₂H₁₆N₄OS [M+H]⁺: 385.1038; found 385.1132.

4.1.2.2 2-(4-((1-(2-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5b)
Yield: 86%, M.P.: 166-168°C; White Solid; IR (KBr) ν cm⁻¹: 3124 (Aromatic C-H stretching), 1593 (C=O stretching) 1481 (N-N stretching), 1420 (N=N stretching); ¹H NMR (300 MHz, CDCl₃) δ ppm = 5.36 (s, 2H, OCH₂), 7.09-8.06 (m, 13H, merged signals, Ar-H and triazolyl-H); ¹³C NMR (125 MHz, CDCl₃) δ ppm = 62.17, 115.31, 118.69, 121.00, 121.06, 121.69, 123.04, 125.06, 127.29, 129.18, 129.37, 131.04, 135.02, 135.81, 137.85, 144.89, 154.30, 157.32, 160.45, 167.71; HRMS (ESI)⁺ calcd. for C₂₂H₁₆ClN₄OS [M+H]⁺: 419.0689 and found 419.0745.

4.1.2.3 2-(4-((1-(3-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5c)
Yield: 88%, M.P.: 146-148 °C; White Solid; IR (KBr) ν cm⁻¹: 3097 (Aromatic C-H stretching), 1594 (C=O stretching) 1481 (N-N stretching), 1399 (N=N stretching); ¹H NMR (300 MHz, CDCl₃) δ ppm = 5.39 (s, 2H, OCH₂), 7.11-8.07 (m, 13H, merged signals, Ar-H and triazolyl-H); ¹³C NMR (125 MHz, CDCl₃) δ ppm = 62.38, 115.47, 120.89, 121.80, 123.15, 125.15, 126.50, 127.35, 129.23, 129.47, 130.06, 134.51, 134.70, 135.16, 135.30, 135.61, 135.80, 137.00, 137.19, 144.80, 154.45, 160.68; HRMS (ESI)⁺ calcd. for C₂₂H₁₆ClN₄OS [M+H]⁺: 419.0689; found 419.0740.
4.1.2.4 2-(4-((1-(4-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5d)
Yield: 94 %, M.P.: 202-205 °C; White Solid; IR (KBr) ν cm⁻¹: 3056 (Aromatic C-H stretching), 1596 (C=C stretching), 1480 (N-N stretching), 1420 (N=N stretching); ¹H NMR (300 MHz, DMSO-_d₆) δ ppm = 5.40 (s, 2H, OCH₂), 7.28 9.07 (m, 13H, merged signals, Ar-H and triazolyl-H); ¹³C NMR (125 MHz, DMSO-_d₆) δ ppm = 61.97, 116.28, 122.61, 122.96, 123.23, 123.89, 125.88, 126.67, 127.27, 129.63, 130.62, 133.80, 134.97, 136.06, 144.36, 154.37, 161.15, 167.66; HRMS (ESI)+ calcd. for C₂₂H₁₆ClN₄OS [M+H]⁺: 419.0689 and found 419.0739.

4.1.2.5 2-(4-((1-(2-Bromophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5e)
Yield: 87 %, M.P.: 133-136 °C; White Solid; IR (KBr) ν cm⁻¹: 3042 (Aromatic C-H stretching), 1600 (C=C stretching), 1476 (N-N stretching), 1431 (N=N stretching); ¹H NMR (300 MHz, CDCl₃) δ ppm = 5.41 (s, 2H, OCH₂), 7.12-8.09 (m, 13H, merged signals, Ar-H and triazolyl-H); ¹³C NMR (125 MHz, CDCl₃) δ ppm = 62.02, 115.21, 118.51, 121.47, 122.81, 124.82, 124.95, 126.28, 127.00, 128.16, 128.47, 129.12, 131.26, 133.88, 134.80, 136.33, 137.40, 160.36, 164.64, 167.57; HRMS (ESI)+ calcd. for C₂₂H₁₆BrN₄OS [M+H]⁺: 463.0183 and found 463.0770.

4.1.2.6 2-(4-((1-(3-Bromophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5f)
Yield: 85 %, M.P.: 173-175 °C; White Solid; IR (KBr) ν cm⁻¹: 3014 (Aromatic C-H stretching), 1599 (C=C stretching), 1485 (N-N stretching), 1418 (N=N stretching); ¹H NMR (300 MHz, CDCl₃) δ ppm = 5.40 (s, 2H, OCH₂), 7.14-8.10 (m, 13H, merged signals, Ar-H and triazolyl-H); ¹³C NMR (100 MHz, CDCl₃) δ ppm = 62.04, 115.18, 119.07, 120.96, 121.55, 122.90, 123.38, 123.70, 124.92, 126.27, 127.17, 129.23, 130.33, 131.99, 134.70, 134.86, 137.80, 153.71, 154.17, 160.30; HRMS (ESI)+ calcd. for C₂₂H₁₆BrN₄OS[M+H]⁺: 463.0183 and found 463.0214.

4.1.2.7 2-(4-((1-(2-Methoxyphenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5g)
Yield: 93 %, M.P.: 169-172 °C; White Solid; IR (KBr) ν cm\(^{-1}\): 2913 (Aromatic C-H stretching), 1595 (C=C stretching), 1469 (N-N stretching), 1422 (N=N stretching); \(^1\)H NMR (300 MHz, CDCl\(_3\)) δ ppm = 3.90 (s, 3H, OCH\(_3\)), 5.39 (s, 2H, OCH\(_2\)), 7.08-8.22 (m, 13H, merged signals, Ar-H and triazolyl-H); \(^13\)C NMR (125 MHz, CDCl\(_3\)) δ ppm = 55.91, 62.09, 112.16, 115.21, 117.92, 121.19, 121.45, 122.78, 124.79, 125.41, 125.81, 126.15, 126.84, 129.08, 130.18, 131.53, 134.78, 151.01, 153.90, 160.51, 167.71; HRMS (ESI)\(^+\) calcd. for C\(_{23}\)H\(_{19}\)N\(_4\)O\(_2\)S [M+H]\(^+\): 415.1184 and found 415.1243.

4.1.2.8 2-(4-((1-(4-Methoxyphenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl) benzo[d]thiazole (5h)

Yield: 91 %, M.P.: 184-186 °C; White solid; IR (KBr) ν cm\(^{-1}\): 3135 (Aromatic C-H stretching), 2880 (Aromatic C-H stretching), 1597 (C=C stretching), 1478 (N-N stretching), 1444 (N=N stretching); \(^1\)H NMR (300 MHz, DMSO-\(d_6\)) δ ppm = 3.74 (s, 3H, OCH\(_3\)), 5.35 (s, 2H, OCH\(_2\)), 6.91-8.33 (m, 13H, merged signals, Ar-H and triazolyl-H); \(^13\)C NMR (100 MHz, DMSO-\(d_6\)) δ ppm = 55.21, 61.30, 114.08, 115.57, 120.89, 122.26, 122.54, 125.23, 126.62, 128.96, 131.48, 134.29, 142.11, 153.69, 156.91, 160.61, 163.67, 167.10; HRMS (ESI)\(^+\) calcd. for C\(_{23}\)H\(_{18}\)N\(_4\)O\(_2\)S [M+H]\(^+\): 415.1184; found 415.1216.

4.1.2.9 2-(4-((1-(2,4-Difluorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5i)

Yield: 93 %, M.P.: 158-161 °C; White Solid; IR (KBr) ν cm\(^{-1}\): 3084 (Aromatic C-H stretching), 1603 (C=C stretching), 1466 (N-N stretching), 1445 (N=N stretching); \(^1\)H NMR (300 MHz, CDCl\(_3\)) δ ppm = 5.31 (s, 2H, OCH\(_2\)), 7.01-8.08 (m, 12H, merged signals, Ar-H and triazolyl-H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) δ ppm = 61.96, 115.11, 118.49, 120.79, 120.86, 121.49, 122.83, 124.65, 126.20, 127.09, 128.97, 129.17, 130.83, 134.81, 135.60, 137.66, 144.69, 154.10, 157.32, 160.24, 167.51; LCMS (ESI)\(^+\) calcd. for C\(_{22}\)H\(_{15}\)F\(_2\)N\(_4\)OS [M+H]\(^+\): 421.09 and found 421.09.

4.1.2.10 2-(4-((1-Mesityl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5j)

Yield: 89 %, M.P.: 158-161 °C; White Solid; \(^1\)H NMR (300 MHz, CDCl\(_3\)) δ ppm = 1.94 (s, 6H, 2xCH\(_3\)), 2.33 (s, 3H, CH\(_3\)), 5.39 (s, 2H, CH\(_2\)), 6.91-8.06 (m, 11H, merged signals, Ar-H and triazolyl-H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) δ ppm = 16.80, 20.41, 61.21, 115.50, 122.00, 122.30, 124.27, 124.97, 125.71, 126.35, 128.12, 128.66, 133.07, 134.06, 134.25, 139.40,
4.1.2.11 2-(4-((1-Benzyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5k)
Yield: 94 %, M.P.: 199-201 °C; White solid; 1H NMR (300 MHz, CDCl$_3$) δ ppm = 5.27 (s, 2H, OCH$_2$), 5.33 (s, 2H, N-CH$_2$), 7.06-8.06 (m, 14H, merged signals, Ar-H and triazolyl-H);
13C NMR (100 MHz, CDCl$_3$) δ ppm = 52.22, 61.29, 115.48, 119.20, 122.17, 122.47, 123.75, 125.10, 125.80, 126.48, 128.85, 128.88, 134.24, 138.37, 142.05, 153.65, 160.55, 164.12, 166.96; HRMS (ESI)$^+$ calcd. for C$_{25}$H$_{23}$N$_4$OS [M+H]$^+$: 427.1548 and found 427.1582.

4.1.2.12 2-(4-((1-(4-Fluorobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl) benzo[d]thiazole (5l)
Yield: 95 %, M.P.: 161-164 °C; White solid; 1H NMR (300 MHz, CDCl$_3$) δ ppm = 5.25 (s, 2H, OCH$_2$), 5.50 (s, 2H, N-CH$_2$), 7.01-8.03 (m, 13H, merged signals, Ar-H and triazolyl-H);
13C NMR (125 MHz, CDCl$_3$) δ ppm = 53.75, 62.37, 115.40, 116.30, 116.52, 121.74, 122.78, 123.09, 125.09, 126.45, 127.25, 129.36, 130.19, 130.27, 130.44, 135.09, 154.41, 160.63, 164.36, 167.82; HRMS (ESI)$^+$ calcd. for C$_{23}$H$_{18}$FN$_4$OS [M+H]$^+$: 417.1141 and found 417.1200.

4.1.2.13 2-(4-((1-(2-Chlorobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5m)
Yield: 89 %, M.P.: 144-146 °C; White solid; 1H NMR (300 MHz, CDCl$_3$) δ ppm = 5.28 (s, 2H, OCH$_2$), 5.69 (s, 2H, N-CH$_2$), 7.06-8.06 (m, 13H, merged signals, Ar-H and triazolyl-H);
13C NMR (125 MHz, CDCl$_3$) δ ppm = 51.29, 62.37, 115.37, 121.68, 123.01, 123.37, 125.02, 126.38, 127.12, 127.79, 129.29, 130.12, 132.39, 133.69, 135.03, 154.34, 160.61, 167.79; HRMS (ESI)$^+$ calcd. for C$_{23}$H$_{18}$ClN$_4$OS [M+H]$^+$: 433.0812 and found 433.0893.

4.1.2.14 2-(4-((1-(3-Chlorobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl) benzo[d]thiazole (5n)
Yield: 88 %, M.P.: 158-161 °C; White solid; 1H NMR (300 MHz, CDCl$_3$) δ ppm = 5.26 (s, 2H, OCH$_2$), 5.69 (s, 2H, N-CH$_2$), 7.07-8.06 (m, 13H, merged signals, Ar-H and triazolyl-H);
13C NMR (125 MHz, CDCl$_3$) δ ppm = 51.74, 62.36, 115.42, 121.72, 123.07, 123.34, 125.06, 126.42, 127.19, 127.84, 129.33, 130.17, 130.55, 130.63, 132.43, 133.74, 135.07, 154.38,
4.1.2.15 2-(4-((1-(4-Bromobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5o)

Yield: 87 %, M.P.: 191-194 °C; White solid; 1H NMR (300 MHz, CDCl$_3$) δ ppm = 5.26 (s, 2H, OCH$_2$), 5.48 (s, 2H, N-CH$_2$), 7.04-8.03 (m, 13H, merged signals, Ar-H and triazolyl-H); 13C NMR (125 MHz, CDCl$_3$) δ ppm = 53.82, 62.37,115.43, 121.75, 122.86,123.11, 123.30, 125.10, 126.46, 127.27, 129.38, 129.93, 132.59, 133.60, 135.10, 154.41, 160.61, 167.82; HRMS (ESI)$^+$ calcd. for C$_{23}$H$_{18}$ClN$_4$OS [M+H]$^+$: 477.0340 and found 477.0390.

4.1.2.16 2-(4-((4-(Benzo[d]thiazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-phenyl acetamide (5p)

Yield: 94 %, M.P.: 233-235 °C; White solid; 1H NMR (300 MHz, DMSO-d_6) δ ppm = 5.31 (s, 2H, CH$_2$), 5.38 (s, 2H, OCH$_2$), 7.09-8.31 (m, 14H, merged signals, Ar-H and triazolyl-H), 10.48 (s, 1H, amido-NH); 13C NMR (125 MHz, DMSO-d_6) δ ppm = 52.22, 61.29, 115.48, 119.20, 122.17, 122.47, 123.75, 125.10, 125.80, 126.48, 128.85, 128.88, 134.24, 138.37, 142.05, 153.65, 160.55, 164.12, 166.96; HRMS (ESI)$^+$ calcd. for C$_{24}$H$_{20}$N$_5$O$_2$S [M+H]$^+$: 442.1293 and found 442.1340.

4.1.2.17 2-(4-((4-(Benzo[d]thiazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(3-chloro phenyl)acetamide (5q)

Yield: 88 %, M.P.: 209-211°C; White solid; 1H NMR (300 MHz, DMSO-d_6) δ ppm = 5.34 (s, 2H, CH$_2$), 5.43 (s, 2H, OCH$_2$), 7.17-8.35 (m, 13H, merged signals, Ar-H and triazolyl-H), 10.74 (s, 1H, amido-NH); 13C NMR (125 MHz, DMSO-d_6) δ ppm = 52.60, 61.66, 115.89, 118.02,119.11, 122.61, 122.89, 123.92, 125.53, 126.19, 126.91, 129.26, 131.06, 133.58, 134.64, 140.19, 142.48, 154.06, 160.96, 165.04, 167.37; HRMS (ESI)$^+$ calcd. for C$_{24}$H$_{19}$ClN$_3$O$_2$S [M+H]$^+$: 476.0903 and found 476.0938.

4.1.2.18 2-(4-((4-(Benzo[d]thiazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(4-chloro phenyl)acetamide (5r)

Yield: 92 %, M.P.: 220-222 °C; White solid; 1H NMR (300 MHz, DMSO-d_6) δ ppm = 5.31 (s, 2H, CH$_2$), 5.38 (s, 2H, OCH$_2$), 7.24-8.32 (m, 13H, merged signals, Ar-H and triazolyl-H),
10.65 (s, 1H, amido-NH); 13C NMR (125 MHz, DMSO-d_6) δ ppm = 52.72, 61.78, 116.01, 121.28, 122.74, 123.04, 126.31, 126.44, 127.04, 127.67, 127.67, 129.37, 132.09, 134.77, 137.86, 142.60, 154.17, 161.07, 164.89, 167.50; HRMS (ESI)$^+$ calcd. for C$_{24}$H$_{19}$ClN$_5$O$_2$S $[M+H]^+$: 476.0903 and found 476.0935.

4.1.2.19 2-(4-((4-(Benzo[d]thiazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(m-tolyl)acetamide (5s)
Yield: 87 %, M.P.: 204-206 °C; White solid; 1H NMR (300 MHz, DMSO-d_6) δ ppm = 2.30 (s, 3H, CH$_3$), 5.33 (s, 2H, CH$_2$), 5.38 (s, 2H, OCH$_2$) 6.91-8.38 (m, 13H, merged signals, Ar-H and triazolyl-H), 10.46 (s, 1H, amido-NH); 13C NMR (100 MHz, DMSO-d_6) δ ppm = 21.89, 52.76, 61.80, 116.03, 116.91, 120.27, 122.76, 123.04, 125.01,125.68, 126.32, 127.06, 129.49, 129.41, 134.78, 136.67, 136.85, 138.30, 142.56, 154.19, 161.10, 164.62, 167.52; HRMS (ESI)$^+$ calcd. for C$_{25}$H$_{22}$N$_5$O$_2$S $[M+H]^+$: 456.1450 and found 456.1481.

4.1.2.20 2-(4-((4-(Benzo[d]thiazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(p-tolyl)acetamide (5t)
Yield: 92 %, M.P.: 240-243 °C; White solid; 1H NMR (300 MHz, CDCl$_3$) δ ppm = 2.28 (s, 3H, CH$_3$), 5.33 (s, 2H, CH$_2$), 5.37 (s, 2H, OCH$_2$), 7.14-8.34 (m, 13H, merged signals, Ar-H and triazolyl-H), 10.45 (s, 1H, amido-NH); 13C NMR (125 MHz, CDCl$_3$) δ ppm = 20.80, 52.55, 61.62, 115.85, 119.55, 122.58, 122.86, 125.50, 126.14, 126.88, 129.23, 129.65, 133.10, 134.61, 136.24, 138.87, 142.38, 154.01, 160.92, 164.25, 167.34; HRMS (ESI)$^+$ calcd. for C$_{25}$H$_{22}$N$_5$O$_2$S $[M+H]^+$: 456.1450 and found 456.1482.
4.1.1 2-(4-(Prop-2-yn-1-yloxy)phenyl)benzo[d]thiazole (3)

1H NMR and 13C NMR of 2-(4-(Prop-2-yn-1-yloxy)phenyl)benzo[d]thiazole (3)
HRMS of 2-(4-(Prop-2-yn-1-yloxy)phenyl)benzo[d]thiazole (3)

IR of 2-(4-(Prop-2-yn-1-yloxy)phenyl)benzo[d]thiazole (3)
4.1.2.1 2-(4-((1-Phenyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5a)

1H NMR and 13C NMR of 2-(4-((1-Phenyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5a)
HRMS of 2-((1-Phenyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5a)

IR of 2-((1-Phenyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5a)
4.1.2.2 2-((1-(2-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5b)

1H and 13C NMR of 2-((1-(2-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d] thiazole (5b)
HRMS of 2-(4-((1-(2-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5b)

IR of 2-(4-((1-(2-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5b)
4.1.2.3 2-(4-((1-(3-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5c)

1H NMR and 13C NMR of 2-(4-((1-(3-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5c)
HRMS of 2-(4-((1-(3-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5c)

IR of 2-(4-((1-(3-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5c)
4.1.2.4 2-(4-((1-(4-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5d)

1H NMR and 13C NMR of 2-(4-((1-(4-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5d)
HRMS of 2-(4-((1-(4-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl) benzo[d]thiazole (5d)

IR of 2-(4-((1-(4-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5d)
4.1.2.5 2-(4-((1-(2-Bromophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5e)

1H NMR and 13C NMR of 2-(4-((1-(2-Bromophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5e)
HRMS of 2-(4-((1-(2-Bromophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d] thiazole (5e)

IR of 2-(4-((1-(2-Bromophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d] thiazole (5e)
4.1.2.6 2-(4-((1-(3-Bromophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5f)

1H NMR and 13C NMR of 2-(4-((1-(3-Bromophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5f)
IR 2-(4-((1-(3-Bromophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl) benzo[d] thiazole (5f)
4.1.2.7 2-(4-((1-(2-Methoxyphenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5g)

1H NMR and 13C NMR of 2-(4-((1-(2-Methoxyphenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d] thiazole (5g)
HRMS of 2-((1-(2-Methoxyphenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl) benzo[d]thiazole (5g)

IR of 2-((1-(2-Methoxyphenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl) benzo[d]thiazole (5g)
4.1.2.8 2-(4-((1-(4-Methoxyphenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5h)

1H NMR and 13C NMR of 2-(4-((1-(4-Methoxyphenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5h)
HRMS of 2-(4-((1-(4-Methoxyphenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d] thiazole (5h)

IR of 2-(4-((1-(4-Methoxyphenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d] thiazole (5h)
4.1.2.9 2-(4-((1-(2,4-Difluorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5i)

1H NMR and 13C NMR of 2-(4-((1-(2,4-Difluorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5i)

LCMS of 2-(4-((1-(2,4-Difluorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5i)
IR of 2-((4-((1-(2,4-Difluorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d] thiazole

(5i)
4.1.2.10 2-(4-((1-Mesityl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5j)

1H NMR and 13C NMR of 2-(4-((1-Mesityl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5j)
HRMS of 2-((1-Mesityl-1H-1,2,3-triazol-4-yl)methoxy)phenyl) benzo[d]thiazole (5j)
4.1.2.11 2-(4-((1-Benzyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5k)

1H NMR and 13C NMR 2-(4-((1-Benzyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5k)
HRMS of 2-(4-((1-Benzyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5k)
4.1.2.12 2-(4-((1-(4-Fluorobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl) benzo[d] thiazole (5l)

1H NMR and 13C NMR of 2-(4-((1-(4-Fluorobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl) benzo[d] thiazole (5l)
HRMS of 2-(4-((1-(4-Fluorobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5l)
4.1.2.13 2-(4-((1-(2-Chlorobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5m)

1H NMR and 13C NMR of 2-(4-((1-(2-Chlorobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5m)
HRMS of 2-((1-(2-Chlorobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl) benzo[d]thiazole (5m)
4.1.2.14 2-((1-(3-Chlorobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5n)

1H NMR and 13C NMR 2-((1-(3-Chlorobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5n)
HRMS of 2-(4-((1-(3-Chlorobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl) benzo[d]thiazole (5n)
4.1.2.15 2-(4-((1-(4-Bromobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5o)

1H NMR and 13C NMR of 2-(4-((1-(4-Bromobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)benzo[d]thiazole (5o)
HRMS of 2-(4-((1-(4-Bromobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl) benzo[d]thiazole (5o)
4.1.2.16 2-((4-(Benzo[d]thiazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-phenyl acetamide (5p)

1H NMR and 13C NMR of 2-((4-(Benzo[d]thiazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-phenyl acetamide (5p)
HRMS of 2-((4-(Benzo[d]thiazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-phenyl acetamide (5p)
4.1.2.17 2-((4-(Benzo[d]thiazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(3-chlorophenyl) acetamide (5q)

1H NMR and 13C NMR of 2-((4-(Benzo[d]thiazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(3-chlorophenyl)acetamide (5q)

![NMR Spectra](image)
HRMS of 2-(4-((4-(Benzo[d]thiazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(3-chlorophenyl)acetamide (5q)
4.1.2.18 2-(4-((4-(Benzo[d]thiazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(4-chlorophenyl)acetamide (5r)

1H NMR and 13C NMR of 2-(4-((4-(Benzo[d]thiazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(4-chloro phenyl)acetamide (5r)
HRMS of 2-(4-((4-(Benzo[d]thiazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(4-chlorophenyl)acetamide (5r)
4.1.2.19 2-(4-((4-(Benzod[thiazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(m-tolyl) acetamide (5s)

1H NMR and 13C NMR of 2-(4-((4-(Benzod[thiazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(m-tolyl)acetamide (5s)
HRMS of 2-((4-(4-(Benzo[d]thiazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl))-N-(m-tolyl)acetamide (5s)
4.1.2.20 2-((4-(Benzo[d]thiazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(p-tolyl) acetamide (5t)

1H NMR and 13C NMR of 2-((4-(Benzo[d]thiazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(p-tolyl) acetamide (5t)
HRMS of 2-(4-((4-(Benzo[d]thiazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(p-tolyl)acetamide (5t)