Supporting information

Evaluating the dialysis time required for carbon dots by HPLC and the properties of the carbon dots after HPLC fractionation

Chou-Yen Chen Yi-Hua Tsai and Chih-Wei Chang
Department of Chemistry, National Changhua University of Education, Changhua, 50007, Taiwan
Table of contents

Fig. S1: (a) The UV-HPLC and (b) the FL-HPLC of the dialysate (blue line) and the citric acid (gray line). The dialysate was collected after 3 hours dialysis.3

Fig. S2: The FL-HPLC of the C-dots dialyzed using (a) MWCO=1.0 kDa and (b) MWCO=0.5-1.0 kDa membranes. ...4

Fig. S3: The TEM images of (a) the C-dots (α), (b) the C-dots (β) and (c) the C-dots (γ). The averaged radius of C-dots indicates in the figures. ...5

Fig. S4: The XPS C1s spectra of a:C-dots (α); b:C-dots (β) and c:C-dots(γ). The XPS survey spectrum of each C-dots is indicated in the inset. ..6

Fig. S5: The fluorescence decay dynamics of C-dots in the absence and the presence of Hg²⁺ ions. ..7

Fig. S6: (a) The TEM image and (b) the energy dispersive x-ray spectra of the C-dots(α) ...8

Fig. S7: (a) The TEM image and (b) the energy dispersive x-ray spectra of the C-dots(β) ...9

Fig. S8: (a) The TEM image and (b) the energy dispersive x-ray spectra of the C-dots(γ) ..10

Table S1: The fitting parameters of the fluorescence lifetime, the fluorescence anisotropy decay, and fluorescence quenching experiments of C-dots11
Fig. S1: (a) The UV-HPLC and (b) the FL-HPLC of the dialysate (blue line) and the citric acid (gray line). The dialysate was collected after 3 hours dialysis.
Fig. S2: The FL-HPLC of the C-dots dialyzed using (a) MWCO=1.0 kDa and (b) MWCO=0.5-1.0 kDa membranes.
Fig. S3: The TEM images of (a) the C-dots (α), (b) the C-dots (β) and (c) the C-dots (γ). The averaged radius of C-dots indicates in the figures.
Fig. S4: The XPS C1s spectra of a:C-dots (α); b:C-dots (β) and c:C-dots(γ). The XPS survey spectrum of each C-dots is indicated in the inset.
Fig. S5: The fluorescence decay dynamics of C-dots in the absence and the presence of Hg$^{2+}$ ions.
Fig. S6: (a) The TEM image and (b) the energy dispersive x-ray spectra of the C-dots(α)

Diameter = 18.4 ± 8.1 nm
Fig. S7: (a) The TEM image and (b) the energy dispersive x-ray spectra of the C-dots(β)
Fig. S8: (a) The TEM image and (b) the energy dispersive x-ray spectra of the C-dots(γ)
Table S1: The fitting parameters of the fluorescence lifetime, the fluorescence anisotropy decay, and fluorescence quenching experiments of C-dots

<table>
<thead>
<tr>
<th></th>
<th>C-dots(α)</th>
<th>C-dots(β)</th>
<th>C-dots(γ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescence decay</td>
<td>τ₁ (a₁) 0.28 ns (0.07)</td>
<td>τ₂ (a₂) 1.98 ns (0.24)</td>
<td>τ₃ (a₃) 6.64 ns (0.69)</td>
</tr>
<tr>
<td></td>
<td>τ₁ average 3.62 ns</td>
<td>τ₂ average 3.18 ns</td>
<td>τ₃ average 3.08 ns</td>
</tr>
<tr>
<td>Fluorescence quantum yield</td>
<td>Φ_F 0.91%</td>
<td>Φ_F 1.03%</td>
<td>Φ_F 0.77%</td>
</tr>
<tr>
<td>Fluorescence anisotropy</td>
<td>τ_{ani}/ns 0.46 ns</td>
<td>τ_{ani}/ns 0.53 ns</td>
<td>τ_{ani}/ns 0.55 ns</td>
</tr>
<tr>
<td>Fluorescence quenching</td>
<td>K_a (M⁻¹) 6.8×10⁴</td>
<td>K_a (M⁻¹) 2.9×10⁴</td>
<td>K_a (M⁻¹) 3.6×10⁴</td>
</tr>
<tr>
<td>κ</td>
<td>κ 0.27</td>
<td>κ 0.55</td>
<td>κ 0.55</td>
</tr>
</tbody>
</table>

\[a \quad I(t) = \sum_{i=1}^{3} a_i \tau_i, \tau_{average} = \sum_{i=1}^{3} \frac{a_i \tau_i^2}{a_i \tau_i} \]

\[b \quad r(t) = A \times e^{-\frac{t}{\tau_{ani}}} \]