pH-regulated synthesis of CuOx/ERGO nanohybrids with tunable electrocatalytic oxidation activity towards nitrite sensing

Xiaoyue Yue a, b, c, Xiaoyu Luo a, Zijun Zhou a, Yongmei Wu a, b, c, Yanhong Bai a, b, c*

College of Food and Biological Engineering, Zhengzhou University of Light Industry,
Zhengzhou 450001, PR China

Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, PR China

Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou 450001, PR China

*Corresponding Author.

E-mail: baiyanhong212@163.com;
Fig. S1 SEM images at high magnification of CuO$_x$ grown on graphene prepared with different pH (a) pH 3, (b) pH4, (c) pH6, (d) pH 8; (e) SEM images of CuO$_x$ prepared with pH 4 and (f) the corresponding morphology of ERGO at the bottom.
Fig. S2 SEM images of CuO grown on graphene prepared with different pH (a) pH 1, (b) pH 2, (c) pH 5, (d) pH 7.
Fig. S3 The SEM images of CuOx grown on graphene prepared with different pH (a) 3, (b) 4, (c) 6, (d) 8 and the corresponding EDS mapping images.
Fig. S4 The wide scan XPS spectra of CuOx/ERGO nanohybrids prepared with different pH values
Fig. S5 (a) XPS survey spectra of CuOx/ERGO nanohybrid prepared at pH 4;

The high-resolution XPS spectra of C 1s (b), O 1s (c) and Na 1s (d).
Fig. S6 Different electrochemical performance for 1 mM nitrite detection based on pH-regulated synthesis of CuOx/graphene nanohybrid with different surface morphologies; (a) pH 1-4 (b) pH 5-8.
Fig. S7 Amperometric response towards NO$_2^-$ in the presence of various interferents (1mM uric acid, 1 mM benzoquinone, 1 mM L-cysteine, 1 mM hydroquinone, 1 mM ascorbic acid)
Fig. S8 Representative chromatograms of standard sample containing (a) 0.5 mg mL\(^{-1}\) and (b) 5 mg mL\(^{-1}\) nitrite;
Fig. S9 ion chromatogram of the real (c) meat product samples and (d) drinking water samples. Experimental details are described in the text.