SUPPLEMENTARY MATERIAL

Nitrogen-doped hollow carbon spheres as chemical vapour sensors


a DST-NRF Centre of Excellence in Strong Materials and the Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, WITS 2050, Johannesburg, South Africa.
b Departamento de Fısica, Universidade Federal do Parana, Caixa Postal 19044, 8153-980 Curitiba, PR, Brazil. E-mail: Clara.Garcia-Martinez@ufpr.br
c Department of Physics, Institute of Applied Materials, University of Pretoria, 0028, Pretoria, South Africa. E-mail: bridge@up.ac.za

d Laboratoire des Multimatériaux et Interfaces, UMR-5615 CNRS, Université Claude Bernard Lyon 1, Villeurbanne-Cedex

Deceased

Figure S1: TEM images of; (a-b) SiO₂ spheres and (b) N-HCSs-50.

Figure S2b inset shows the pore size distribution calculated by the Barett-Joyner-Halenda (BJH) method with a broad peaks observed between 20 and 100 nm for all the HCSs; characteristic of the presence of pores and voids in the mesoporous and macroporous region. In the N-HCSs-50, a sharp peak was observed at 100 nm indicating the creation of macropores probably resulting from void of the broken HCSs.

Figure S2: Thermal gravimetric curves, (b) pore size distribution plots of annealed HCSs and N-HCSs and (c) C 1s spectra of annealed HCSs.
Figure S3: (a-c) Sensor resistance as a function of analyte (methanol) concentration, the red line indicates the estimated LoD resistance of the corresponding sensor; (d-f) response of the sensor versus analyte concentration; (g-i) sensor resistance dependence on frequency, dashed line indicates the optimum operating frequency and (j-l) sensor signal to noise ratio as a function of frequency. Corresponding results based on annealed HCSs, N-HCSs-10 and N-HCSs-50 are presented in the first, second and third column, respectively.
Figure S4: (a-c) Sensor resistance as a function of analyte (toluene) concentration, the red line indicates the estimated LoD resistance of the corresponding sensor; (d-f) response of the sensor versus analyte concentration; (g-i) sensor resistance dependence on frequency, dashed line indicates the optimum operating frequency and (j-l) sensor signal to noise ratio as a function of frequency. Corresponding results based on annealed HCSs, N-HCSs-10 and N-HCSs-50 are presented in the first, second and third column, respectively.
Figure S5: (a-c) Sensor resistance as a function of analyte (chloroform) concentration, the red line indicates the estimated LoD resistance of the corresponding sensor; (d-f) response of the sensor versus analyte concentration; (g-i) sensor resistance dependence on frequency, dashed line indicates the optimum operating frequency and (j-l) sensor signal to noise ratio as a function of frequency. Corresponding results based on annealed HCSs, N-HCSs-10 and N-HCSs-50 are presented in the first, second and third column, respectively.
Figure S6: (a-c) Sensor resistance as a function of analyte (lactic acid) concentration, the red line indicates the estimated LoD resistance of the corresponding sensor; (d-f) response of the sensor versus analyte concentration; (g-i) sensor resistance dependence on frequency, dashed line indicates the optimum operating frequency and (j-l) sensor signal to noise ratio as a function of frequency. Corresponding results based on annealed HCSs, N-HCSs-10 and N-HCSs-50 are presented in the first, second and third column, respectively.
Figure S7: (a-c) Sensor resistance as a function of analyte (water) concentration, the red line indicates the estimated LoD resistance of the corresponding sensor; (d-f) response of the sensor versus analyte concentration; (g-i) sensor resistance dependence on frequency, dashed line indicates the optimum operating frequency and (j-l) sensor signal to noise ratio as a function of frequency. Corresponding results based on annealed HCSs, N-HCSs-10 and N-HCSs-50 are presented in the first, second and third column, respectively.
Figure S8: (a-c) Sensor resistance as a function of analyte (acetone) concentration, the red line indicates the estimated LoD resistance of the corresponding sensor; (d-f) response of the sensor versus analyte concentration; (g-i) sensor resistance dependence on frequency, dashed line indicates the optimum operating frequency and (j-l) sensor signal to noise ratio as a function of frequency. Corresponding results based on annealed HCSs, N-HCSs-10 and N-HCSs-50 are presented in the first, second and third column, respectively.

References