Electronic Supplementary Information

Alkyl substituted 4-pyrrolidinopyridinium salts encapsulated in the cavity of cucurbit[10]uril

Weitao Xu, a Ming Liu, a Mary Clare Escaño, b Carl Redshaw, c* Bing Bian, d Ying Fan, a Zhu Tao, a and Xin Xiao a*

a Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China

b Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507, Japan

d Department of Chemistry & Biochemistry, University of Hull, Hull HU6 7RX, U.K.

c College of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China.

Contents.

Figure S1. 1H NMR and 13C NMR spectrums of g1 in D$_2$O (400 MHz).

Figure S2. 1H NMR and 13C NMR spectrums of g2 in D$_2$O (400 MHz).

Figure S3. 1H NMR and 13C NMR spectrums of g3 in D$_2$O (400 MHz).

Figure S4. 1H NMR and 13C NMR spectrums of g4 in D$_2$O (400 MHz).

Figure S5. 1H NMR and 13C NMR spectrums of g5 in D$_2$O (400 MHz).

Figure S6. 1H NMR and 13C NMR spectrums of g6 in D$_2$O (400 MHz).
Figure S7. Interaction of g3 and Q[10] (20 °C): ¹H NMR spectra (400 MHz, D₂O) of g3 (ca. 2 mM) in the absence of Q[10] (A), in the presence of 0.101 equiv. of Q[10] (B), in the presence of 0.199 equiv. of Q[10] (C), in the presence of 0.322 equiv. of Q[10] (D), in the presence of 0.533 equiv. of Q[10] (E), in the presence of 0.890 equiv. of Q[10] (F), in the presence of 1.005 equiv. of Q[10] (G), and in the presence of 1.206 equiv. of Q[10] (H).

Figure S8. Interaction of g5 and Q[10] (20 °C): ¹H NMR spectra (400 MHz, D₂O) of g5 (ca. 2 mM) in the absence of Q[10] (A), in the presence of 0.093 equiv. of Q[10] (B), in the presence of 0.299 equiv. of Q[10] (C), in the presence of 0.431 equiv. of Q[10] (D), in the presence of 1.008 equiv. of Q[10] (E) and in the presence of 1.502 equiv. of Q[10] (F).
Figure S1. 1H and 13C NMR spectra of g1 in D$_2$O (400 MHz).
Figure S2. 1H and 13C NMR spectra of g2 in D$_2$O (400 MHz).
Figure S3. 1H and 13C NMR spectra of g3 in D$_2$O (400 MHz).
Figure S4. 1H and 13C NMR spectra of g4 in D$_2$O (400 MHz).
Figure S5. 1H and 13C NMR spectra of g5 in D$_2$O (400 MHz).
Figure S6. 1H and 13C NMR spectra of g6 in D$_2$O (400 MHz).
Figure S7. Interaction of g3 and Q[10] (20 °C): 1H NMR spectra (400 MHz, D$_2$O) of g3 (ca. 2 mM) in the absence of Q[10] (A), in the presence of 0.101 equiv. of Q[10] (B), in the presence of 0.199 equiv. of Q[10] (C), in the presence of 0.322 equiv. of Q[10] (D), in the presence of 0.533 equiv. of Q[10] (E), in the presence of 0.890 equiv. of Q[10] (F), in the presence of 1.005 equiv. of Q[10] (G), and in the presence of 1.206 equiv. of Q[10] (H).
Figure S8. Interaction of g5 and Q[10] (20 °C): 1H NMR spectra (400 MHz, D$_2$O) of g5 (ca. 2 mM) in the absence of Q[10] (A), in the presence of 0.093 equiv. of Q[10] (B), in the presence of 0.299 equiv. of Q[10] (C), in the presence of 0.431 equiv. of Q[10] (D), in the presence of 1.008 equiv. of Q[10] (E) and in the presence of 1.502 equiv. of Q[10] (F).