Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

N-arylated bisferrocene pyrazole for dual-mode detection of

hydrogen peroxide: AIE-active fluorescent "turn on/off" and

electrochemical non-enzymatic sensor

Ezhumalai David,^a Thamodharan Viswanathan,^{a1} Selvam Prabu^{a1} and Nallasamy Palanisami^{*a} ^aDepartment of Chemistry, School of Advanced Sciences, Vellore Institute of the Technology, *Vellore 632 014, Tamil Nadu, India.* Corresponding author: E-mail: <u>palanisami.n@qmail.com</u>; Tel: +91 9842639776. ^{a1}These authors contributed equally to this work

Supporting Information for New Journal of Chemistry

Table of Contents							
1.	Experimental	1					
2.	Reproducibility and stability	2					
3.	Solvatochromic data [ũmax (cm ⁻¹) of the charge transfer band] for N–arylated bisferrocene pyrazole in different solvents with π^* values by kamlet and Taft.						
4.	¹ H, ¹³ C, ¹⁹ F NMR and GC-Mass spectra of N-						
	arylated bisferrocene pyrazole 1-4						
5.	EI-Mass spectra of N-arylated bisferrocene pyrazole 1-4	S11-S14					
6.	FT-IR and absorbance, emission spectra						
	N-arylated bisferrocene pyrazole 1-4						
7.	UV-Vis absorption spectra of the N-arylated bisferrocene pyrazole						
	1-4 in different Polarity solvent (10 ⁻⁴ M)						
8.	Fluorescence emission spectra of N-arylated bisferrocene pyrazole						
	1-4 AIE- fluorgens in CH ₃ CN/water mixture (40:60) excited at 240 nm						
	with different concentrations of H_2O_2 (0-50µl)						
9.	Cyclic voltammetry of the N-arylated bisferrocene pyrazole 2 and 4						
	modified SPE electrode in 0.1 M PBS (pH 7.0) containing 10 μM H_2O_2						
	at different scan rates. Inset is the relationship between the peak						
	current density and the H_2O_2 Concentration.						
10.	Electrochemical stability test in modified screen-printed electrode for						
	compound 1 and 3.						

Experimental

1. Optimization of the experimental conditions

Optimized Electrochemical detection of H₂O₂

To optimize the working parameters involving the electroreduction of H_2O_2 by the modified screen-printed electrode. Experiments were performed in 1.0×10^{-4} M in 0.1 M phosphate buffer during repetitive additions of H_2O_2 and the influence of pH and applied potential are examined. Due to the mass-transport rate to a modified screen-printed electrode is very fast, stirring is required after injection of the H_2O_2 solutions to a homogeneous mixture. The current responses obtained upon addition of H_2O_2 over a pH range comprising 5 to 8, the potential being set at -0.25V to 0.0 V (1), 0.4V to 0.5V (3). A linear relationship between current and concentration was noticed at all pH values, with higher sensitivity at pH 7.0 and this value was selected for further sensing studies.

Fluorescent detection of H₂O₂.

The stock solution 100mM made freshly dissolving 11 mM of 30% H_2O_2 in 989 mM deionized water. The growth solution consisted of 1.0×10^{-4} M in 0.1 M phosphate buffer solution (PBS, pH 7) and different concentrations of H_2O_2 (10-50µM). The fluorescence intensities were recorded with excitation at 237nm for **1** and 242nm for **2** respectively.

2. Reproducibility and stability

The electrode reproducibility was investigated for Bis-Fc-Pz (**1** and **3**) modified SPEs by preparing three electrodes under the same deposition conditions. Triplicate determination of 10μ M H₂O₂ with each electrode was used in order to estimate the reproducibility. The reproducibility was expressed in relative standard deviation was found compound **1** for 2.88 % modified SPE. In the same manner, a relative standard deviation of compound **3** for 3.41 % was obtained for the modified SPE. The results showed good reproducibility of the electrodes.

Although the operational stability of Bis-Fc-Pz/SPE was verified by monitoring cyclic voltammetry response of the modified electrode in the potential range of -1 to +1 V for 20 continuous cycles (Fig. S26, S27), the electrode exhibits remarkable stability without any significant change in the peak current or peak potential. When not in use, the modified electrode was kept at room temperature. For the long-term stability of Bis-Fc-Pz/SPE was also investigated in the absence and presence of H₂O₂ on every week over the period of 30 days. The electrode retained 90% of its initial current response for H₂O₂ after two week of storage and could maintain 80% of current even after 30 days of storage. The observed results make Bis-Fc-Pz/SPE as a highly promising sensor towards the nonenzymatic determination of H₂O₂.

Solvants	a	ß	 *	Δῦmax			
Solvents	u	þ	Л	(1)	(2)	(3)	(4)
THF	0.00	0.55	0.58	33.89	34.48	33.67	34.12
DCM	0.13	0.10	0.82	34.36	34.60	34.60	34.72
CHCl₃	0.20	0.10	0.58	34.36	34.60	34.60	34.72
EtOAc	0.00	0.45	0.54	34.24	34.12	33.89	34.72
MeOH	1.00	0.66	0.69	34.12	34.48	34.24	34.60
EtOH	0.83	0.75	0.62	34.36	34.48	34.24	34.72
ACN	0.35	0.4	0.75	34.12	34.12	34.36	34.60
DMF	0.00	0.71	0.88	33.89	34.24	34.36	34.48
DMSO	0.00	0.76	1.00	34.12	34.48	34.36	34.36

Table S1 Solvatochromic data [\tilde{u} max (cm⁻¹) of the charge transfer band] for N-arylated bisferrocene pyrazole in different solvents with π^* values by kamlet and Taft.

Fig. S1 ¹H NMR spectrum of N-arylated bisferrocene pyrazole in CDCl₃1

Fig. S2 ^{13}C NMR spectrum of N-arylated bisferrocene pyrazole in CDCl3 1

Fig. S3 ¹H NMR spectrum of N-arylated bisferrocene pyrazole in CDCl₃ 2

Fig. S4 13 C NMR spectrum of N-arylated bisferrocene pyrazole in CDCl₃ 2

Fig. S5 19 F NMR spectrum of N-arylated bisferrocene pyrazole in CDCl₃ 2

Fig. S6 ¹H NMR spectrum of N-arylated bisferrocene pyrazole in CDCl₃ 3

Fig. S7 ¹⁹C NMR spectrum of N-arylated bisferrocene pyrazole in CDCl₃ 3

Fig. S8 ¹H NMR spectrum of N-arylated bisferrocene pyrazole in CDCl₃ 4

Fig. S9 ^{19}C NMR spectrum of N-arylated bisferrocene pyrazole in CDCl3 4

Fig. S10 ^{19}F NMR spectrum of N-arylated bisferrocene pyrazole in CDCl3 4

Fig. S11 El-Mass spectrum of N-arylated bisferrocene pyrazole 1

Fig. S12 EI-Mass spectrum of N-arylated bisferrocene pyrazole 2

Fig. S13 EI-Mass spectrum of N-arylated bisferrocene pyrazole 3

Fig. S14 EI-Mass spectrum of N-arylated bisferrocene pyrazole 4

Fig. S15 FT-IR spectrum of N-arylated bisferrocene pyrazole 1–4

Fig. S16 UV–Vis absorption spectrum of N-arylated bisferrocene pyrazole 1-4 in CH₃CN solution (10^{-4}) M

Fig. S17 Fluorescence emission and excitation spectra of N-arylated bisferrocene pyrazole 1-4 in CH₃CN solution 10^{-4} M (excitation wavelength: 237(1 and 2), 242 (3 and 4))

Fig. S18 UV-Vis absorption spectra of the N-arylated bisferrocene pyrazole **1** in different Polarity solvent (10^{-4} M)

Fig. S19 UV-Vis absorption spectra of the N-arylated bisferrocene pyrazole **2** in different Polarity solvent (10⁻⁴ M)

Fig. S20 UV-Vis absorption spectra of the N-arylated bisferrocene pyrazole **3** in different Polarity solvent (10⁻⁴ M)

Fig. S21 UV-Vis absorption spectra of the N-arylated bisferrocene pyrazole **4** in different Polarity solvent (10⁻⁴ M)

Fig. S22 Fluorescence emission spectra of N-arylated bisferrocene pyrazole **2** AIE-fluorgens in CH₃CN/water mixture (40:60) excited at 240 nm with different concentrations of H_2O_2 (0-50µl)

Fig. S23 Fluorescence emission spectra of N-arylated bisferrocene pyrazole 4 AIE-fluorgens in CH_3CN /water mixture (40:60) excited at 237 nm with different concentrations of H_2O_2 (0-50µl)

Fig. S24 Cyclic voltammetry of the N-arylated bisferrocene pyrazole (**2**) modified SPE electrode in 0.1 M PBS (pH 7.0) containing 5 μ M H₂O₂ at different scan rates. Inset is the relationship between the peak current density and the H₂O₂Concentration.

Fig. S25 Cyclic voltammetry of the N-arylated bisferrocene pyrazole (**2**) modified SPE electrode in 0.1 M PBS (pH 7.0) containing 5 μ M H₂O₂ at different scan rates. Inset is the relationship between the peak current density and the H₂O₂Concentration.

Fig. S26 Electrochemical stability test in modified screen-printed electrode for compound 1.

Fig. S27 Electrochemical stability test in modified screen-printed electrode for compound 3.