Structures, Relative Stabilities and Binding Energies of Neutral Water Clusters, \((H_2O)_{2-30}\)

Alhadji Malloum*,†, Jean Jules Fifen*,†, Zoubeida Dhaouadi‡, Serge Guy Nana Engo§ and Jeanet Conradie○

† Department of Physics, Faculty of Science, University of Ngaoundere, P.O. BOX 454, Ngaoundere, Cameroon.
‡ Laboratoire de Spectroscopie Atomique Moléculaire et Applications, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire 1060, Tunis, Tunisie.
§ Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa.
○ July 12, 2019

SUPPORTING INFORMATION:

1 Structures of neutral water clusters

\((H_2O)_{2-7}\). Small size water clusters have been extensively investigated in the literature and their structures are known. Our investigations confirm previous results on the structures of neutral water clusters lower than the heptamer. There is only one linear isomer belonging to the \(C_2\) point group on the PES of the water dimer. Cyclic structure is found to be unstable for the water dimer, contrary to the case of ammonia dimer where both cyclic and linear isomers are reported as most stable structures\(^1\). From trimer to pentamer, the most stable isomers are 2D cyclic structures. The first occurrence of 3D structures starts from the water hexamer. The most stable structure of the water hexamer has been a controversy between the Prism and the Cage isomers. In this work, we found that the most stable hexamer is the Prism isomer, while the Cage isomer is found to be the second most stable one, lying 0.8 kcal/mol above Prism (Figure 1). Bates and Tshumper\(^2\) found that the Prism is consistently the most stable water hexamer, lying 0.06 kcal/mol below the nearly isoenergetic Cage isomer at the electronic MP2 CBS limit, 0.25 kcal/mol below at the electronic CCSD(T) CBS limit, and 0.09 kcal/mol below at the harmonic ZPVE corrected CCSD(T) CBS limit. Elsewhere, at the M06-2X/aug-cc-pVTZ level of theory, we found that the Prism isomer is the most stable water hexamer lying 0.6 kcal/mol below the Cage isomer. All these results show that the announced controversy is due to the closed energies of the concerned isomers, which in turn renders the global minimum energy structure sensible to the computational level. In addition, Manna and coworkers\(^3\) performed extensive benchmark calculations at the MP2 and CCSD(T) levels of theory. They found that the Prism isomer is the most stable, followed by the cage isomer. Pérez and coworkers\(^4\) investigated the water hexamer at using broadband experimental spectroscopy. They found that the relative isomer populations at different expansion conditions establish that the cage isomer is the minimum energy structure.

As far as the water heptamer is concerned, its relative stability exhibits the same trend as that of the water hexamer (see Figure 1). The most stable water heptamer is a Prism like isomer, W7_1, followed by W7_2 lying 2.2 kcal/mol above W7_1. We reported five isomers on the PES of the water heptamer, Figure 1. Our relative stabilities for the water hexamer and the water heptamer are consistent with the reported results from Shields et al.\(^5\) at MP2/CBS-e. Furthermore, the W7_1 isomer has been reported previously as the most stable water heptamer at MP2 levels of theory.\(^6,7\).

* E-mail: almayega@gmail.com; Tel: 00237 695 15 10 56
† E-mail: juleffjen@gmail.com; Tel: 00237 694 84 77 20
Structures, Relative Stabilities and Binding Energies of Neutral Water Clusters, \((H_2O)_{2-30}\)

Malloum et al.

Fig. S 2 Optimized structures of the water octamer \((H_2O)_{n=8}\) at the M06-2X/6-31++g(d,p) level of theory. Details are provided in the caption of Figure 1.

Fig. S 3 Optimized structures of the water nonamer \((H_2O)_{n=9}\) at the M06-2X/6-31++g(d,p) level of theory. Details are provided in the caption of Figure 1.

2 Relative population of neutral water clusters

The following figures are reporting the relative population of neutral water clusters. The population of water 19-mer, 21-mer, 28-mer, 29-mer and 30-mer are dominated exclusively by the most stable isomer. Thus these population are not presented as figures.

References

Fig. S 4 Optimized structures of the water decamer (H_2O_{10}) at the M06-2X/6-31++g(d,p) level of theory. Details are provided in the caption of Figure 1.

Fig. S 5 Optimized structures of the water undecamer (H_2O_{11}) at the M06-2X/6-31++g(d,p) level of theory. Details are provided in the caption of Figure 1. Numbers in red color represent the ZPE uncorrected relative energies as computed at the MP2/aug-cc-pVTZ level of theory.

Fig. S 6 Optimized structures of the water dodecamer (H_2O_{12}) at the M06-2X/6-31++g(d,p) level of theory. Details are provided in the caption of Figure 1.
Structures, Relative Stabilities and Binding Energies of Neutral Water Clusters, (H$_2$O)$_{2-30}$

Fig. S 7 Optimized structures of the water tridecamer (H$_2$O)$_{n=13}$ at the M06-2X/6-31++g(d,p) level of theory. Details are provided in the caption of Figure 1.

Fig. S 8 Optimized structures of the water tetradecamer (H$_2$O)$_{n=14}$ at the M06-2X/6-31++g(d,p) level of theory. Details are provided in the caption of Figure 1.

Fig. S 9 Optimized structures of the water pentadecamer (H$_2$O)$_{n=15}$ at the M06-2X/6-31++g(d,p) level of theory. Details are provided in the caption of Figure 1.
Fig. S 10 Optimized structures of the water hexadecamer \((\text{H}_2\text{O})_{n=16}\) at the M06-2X/6-31++g(d,p) level of theory. Details are provided in the caption of Figure 1.

Fig. S 11 Optimized structures of the water heptadecamer \((\text{H}_2\text{O})_{n=17}\) at the M06-2X/6-31++g(d,p) level of theory. Details are provided in the caption of Figure 1.
Fig. S12 Optimized structures of the water octadecamer \((H_2O)_{n=18}\) at the M06-2X/6-31++g(d,p) level of theory. Details are provided in the caption of Figure 1.

Fig. S13 Optimized structures of the water nonadecamer \((H_2O)_{n=19}\) at the M06-2X/6-31++g(d,p) level of theory. Details are provided in the caption of Figure 1.
Fig. S 14 Optimized structures of the water eicosamer \((\text{H}_2\text{O})_{n=20}\) at the M06-2X/6-31++g(d,p) level of theory. Details are provided in the caption of Figure 1.

Fig. S 15 Optimized structures of the water 21-mer \((\text{H}_2\text{O})_{n=21}\) at the M06-2X/6-31++g(d,p) level of theory. Details are provided in the caption of Figure 1.
Fig. S 16 Optimized structures of the water 22-mer \((H_2O)_{22}\) at the M06-2X/6-31++g(d,p) level of theory. Details are provided in the caption of Figure 1.

Fig. S 17 Optimized structures of the water 23-mer \((H_2O)_{23}\) at the M06-2X/6-31++g(d,p) level of theory. Details are provided in the caption of Figure 1.
Fig. S 18 Optimized structures of the water 24-mer ($H_2O_{n=24}$) at the M06-2X/6-31+g(d,p) level of theory. Details are provided in the caption of Figure 1.

Fig. S 19 Optimized structures of the water 25-mer ($H_2O_{n=25}$) at the M06-2X/6-31+g(d,p) level of theory. Details are provided in the caption of Figure 1.
Fig. S 20 Optimized structures of the water 26-mer \((\text{H}_2\text{O})_{26}\) at the M06-2X/6-31++g(d,p) level of theory. Details are provided in the caption of Figure 1.

Fig. S 21 Optimized structures of the water 27-mer \((\text{H}_2\text{O})_{27}\) at the M06-2X/6-31++g(d,p) level of theory. Details are provided in the caption of Figure 1.
Fig. S 22 Optimized structures of the water 28-mer (H₂O)₂₈ at the M06-2X/6-31++g(d,p) level of theory. Details are provided in the caption of Figure 1.

Fig. S 23 Optimized structures of the water 29-mer (H₂O)₂₉ at the M06-2X/6-31++g(d,p) level of theory. Details are provided in the caption of Figure 1.
Fig. S 24 Optimized structures of the water 30-mer \((H_2O)_{30} \) at the M06-2X/6-31++g(d,p) level of theory. Details are provided in the caption of Figure 1.
Fig. S 25 Relative population of neutral water clusters, $(H_2O)_{n=6-11}$.

References
Fig. S26 Relative population of neutral water clusters, (H₂O)₁₂−₁₇.
Fig. S 27 Relative population of neutral water clusters, \((H_2O)_{n=18-25}\).
Fig. S28 Relative population of neutral water clusters, \((H_2O)_{26-27}\).