Support information for

Poly-L-lysine Coated PLGA/Poly (amino Acid)

Modified Hydroxyapatite Porous Scaffolds as Efficient Tissue Engineering Scaffolds for Cell Adhesion, Proliferation, and Differentiation

Shuang Zheng¹, Yonghong Guan¹, Haichi Yu¹, Ge Huang¹, Changjun Zheng ¹*

¹ Department of Orthopedic Surgery, the Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun TX: 130041, PR China

Current Address: Department of Orthopedic Surgery, the Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun TX: 130041, PR China

*Corresponding Author

E-mail: zhengchangjun9616@126.com (ZCJ);
Supplementary Figures

Fig. S1 FT-IR spectra (A), XRD patterns (B), and TGA curves (C) of HA and PBLG-g-HA.

Fig. S2 EDX spectra (A) and element contents (B) of PLGA/HA and PLGA/PBLG-g-HA porous scaffolds.
Supplementary Methods

Characterization of HA and PBLG-g-HA

Fourier-transform infrared spectroscopy (FT-IR, Bio-Rad Win-IR Spectrometer, Watford, UK), X-ray diffraction (XRD, D8 ADVANCE, Germany) and thermal gravimetric analysis (TGA) (TA Instruments TGA500, USA) were used to examine the amount of surface grafted PBLG, chemical properties and crystalline structure of HA and PBLG-g-HA.

EDX spectra and element contents of PLGA/HA and PLGA/PBLG-g-HA porous scaffolds

The scaffolds were fractured after snap-freezing, sputter-coated with gold, and observed at an accelerating voltage of 15 kV. For characterizing the distribution and exposure degrees of PBLG-g-HA and HA in PLGA matrix, it was analyzed with energy dispersive X-ray spectrometry (EDX) (XL-30W/TMP, Philips, Amsterdam, The Netherlands).