ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Secondary interactions, steric hindrance and electric charge effect the on the interaction of V^{IV}O species with proteins

Giuseppe Sciortino,^{*a,b*} Daniele Sanna,^{*c*} Valeria Ugone,^{*b*} Jean-Didier Maréchal,^{*a*} Mercè Alemany-Chavarria,^{*a*} and Eugenio Garribba*^{*b*}

- ^a Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
- ^b Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy. E-mail: garribba@uniss.it; Tel: +39 079 229487.
- ^c Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy.

Ion	Composition	Exptl m/z ^a	Calcd m/z ^a	Error (ppm) ^b
$[V^{IV}O(pip)_2+H]^+$	$C_{28}H_{33}N_{10}O_7V$	672.19713	672.19678	0.5
[V ^{IV} O(pip) ₂ (OH)] ⁻	$C_{28}H_{33}N_{10}O_8V\\$	688.19279	688.19352	-1.1
$[V^VO_2(pip)_2]^-$	$C_{28}H_{32}N_{10}O_8V\\$	687.18573	687.18497	1.1

Table S1 Species identified in the ESI-MS spectra of the system $V^{IV}O^{2+}/Hpip 1/2$.

^a Experimental and calculated m/z values are referred to the peak with monoisotopic mass. ^b Error in ppm respect to the calculated value, obtained as $10^6 \times [$ (m/z experimental – m/z calculated) / m/z calculated].

Ion	Composition	Exptl m/z ^a	Calcd m/z ^a	Error (ppm) ^b
[V ^{IV} O(Hhqs) ₂ +H] ⁺	$C_{18}H_{13}N_2O_9S_2V\\$	515.94982	515.94966	0.3
$[V^{IV}O(Hhqs)_2+Na]^+$	$C_{18}H_{12}N_2O_9S_2VNa$	537.93177	537.93161	0.3
$[V^{IV}O(hqs)_2]^{2-}$	$C_{18}H_{10}N_2O_9S_2V\\$	256.46395	256.46392	0.1
[V ^{IV} O(Hhqs)(hqs)] ⁻	$C_{18}H_{11}N_2O_9S_2V\\$	513.93554	513.93511	0.8
$[V^{V}O_{2}(hqs)_{2}]^{3-}$	$C_{18}H_{10}N_2O_{10}S_2V\\$	176.30700	176.30776	-4.3

Table S2 Species identified in the ESI-MS of the of the system $V^{IV}O^{2+}/H_2hqs$ 1/2.

^{*a*} Experimental and calculated m/z values are referred to the peak with monoisotopic mass. ^{*b*} Error in ppm respect to the calculated value, obtained as $10^6 \times [$ (m/z experimental – m/z calculated) / m/z calculated].

Ranking ^a	Hbond	Distance ^b	$F_{\max}{}^{c}$	F_{mean}^{d}	% Pop. ^{<i>e</i>}
Ι	O1…Arg72(NH ₂)	1.950	26.12	25.40	4.0
	O4b····Arg42(NH ₂)	2.116			
	O4b····Gln49(NH ₂)	1.453			
II	O1····Arg74(NH ₂)	1.434	26.04	22.99	6.0
	O4b····Arg72(NH ₂)	2.289			
	N9a…Glu24(COO)	1.709			
III	O4a····Arg72(NH ₂)	1.756	23.47	21.98	15.0
	N9b····Gly47(CO)	1.534			
IV	O4b····Arg72(NH ₂)	2.145	21.12	18.19	24.0
	N9a…Gly47(CO)	1.540			
V	O4b····Arg42(NH ₂)	1.996	21.01	20.40	5.0
	N9a…THr7(CO)	2.110			
VI	O4b····Arg42(NH ₂)	1.541	15.82	18.84	10.0
VII	O4a····Arg72(NH ₂)	3.158	14.52	13.05	11.0
	O4b····Arg72(NH ₂)	2.243			
VIII	O4b····Arg74(NH ₂)	2.105	12.41	11.57	7.0
	O4a····Lys27(NH ₃)	4.152			
	O4a····Arg72(NH ₂)	1.928			
	$N7b$ ····Arg72(NH_2)	2.044			

Table S3 Binding sites for *SPY*-5-13-C-[VO(Hpip)₂]²⁺ determined by docking methods.

^{*a*} Ranking of the identified cluster. ^{*b*} Distance in Å. ^{*c*} GoldScore *Fitness* value obtained for the most stable pose of each cluster (F_{max}). ^{*d*} Average value of GoldScore *Fitness* for each cluster (F_{mean}). ^{*e*} Percentage computed considering the total of the solutions reported (number of solutions per cluster).

Ranking ^a	Hbond	Distance ^b	$F_{\max}{}^{c}$	$F_{\text{mean}}{}^{d}$	% Pop. ^e
Ι	O4a····Arg74(NH ₂)	2.521	25.91	24.31	7.0
	O4b····Arg72(NH ₂)	2.136			
	N9a…Glu24(COO)	1.852			
II	O4a····Arg72(NH ₂)	1.610	20.86	19.20	26.0
	N9b····Gly47(CO)	1.757			
III	O4a····Arg72(NH ₂)	1.681	20.77	19.36	21.0
	N9b····Gly47(CO)	1.727			
	N9a····Gly47(CO)	1.583			
IV	O4a····Arg72(NH ₂)	1.726	20.44	19.78	7.0
	N9b····Gly47(CO)	1.615			
V	O4b····Arg42(NH ₂)	1.603	12.28	11.42	15.0

Table S4 Binding sites for *SPY*-5-13-A-[VO(Hpip)₂]²⁺ determined by docking methods.

^{*a*} Ranking of the identified cluster. ^{*b*} Distance in Å. ^{*c*} GoldScore *Fitness* value obtained for the most stable pose of each cluster (F_{max}). ^{*d*} Average value of GoldScore *Fitness* for each cluster (F_{mean}). ^{*e*} Percentage computed considering the total of the solutions reported (number of solutions per cluster).

Ranking ^a	Hbond	Distance ^b	$F_{\max}{}^{c}$	$F_{\text{mean}}{}^{d}$	% Pop. ^{<i>e</i>}
Ι	O4a····Arg42(NH ₂)	2.287	22.11	21.14	6.0
	N9b…Thr7(CO)	1.746			
II	O1····Asp52(NH)	2.445	21.29	13.66	5.0
	O4a····Arg72(NH ₂)	2.034			
	O4b····Arg72(NH ₂)	2.140			
	O4b…Lys27(NH ₃)	3.377			
III	O1····Arg42(NH ₂)	2.219	21.24	19.74	15.0
	N9a…Leu73(CO)	1.452			
	N9b…Thr7(CO)	1.951			
IV	O1···Arg72(NH ₂)	1.506	21.08	20.28	4.0
	O4a····Arg42(NH ₂)	3.656			
	O4a····Gln49(NH ₂)	1.807			
	N9a…Glu24(COO)	2.314			
V	N9a····Thr7(CO)	1.654	19.36	18.61	24.0
	N9b…Leu73(CO)	1.686			
VI	N9a…Leu73(CO)	1.955	19.07	18.70	10.0
	N9b···Thr7(CO)	1.506			
VII	O4a…Lys6(NH ₃)	3.291	18.82	18.13	4.0
VIII	$N7b$ ····Arg72(NH_2)	2.135	18.80	17.81	7.0
	N9a…Glu24(COO)	1.837			

Table S5 Binding sites for *SPY*-5-12-[VO(Hpip)₂]²⁺ determined by docking methods.

^{*a*} Ranking of the identified cluster. ^{*b*} Distance in Å. ^{*c*} GoldScore *Fitness* value obtained for the most stable pose of each cluster (F_{max}). ^{*d*} Average value of GoldScore *Fitness* for each cluster (F_{mean}). ^{*e*} Percentage computed considering the total of the solutions reported (number of solutions per cluster).

Fig. S1 Experimental (top) and calculated (bottom) isotopic pattern for the peak of $[V^{IV}O(pip)_2+H]^+$ revealed at m/z = 672.20 in the ESI-MS spectrum of the system $V^{IV}O^{2+}/Hpip$ 1/2 recorded in the positive-ion mode with a V concentration of 50 μ M.

Fig. S2 Experimental (top) and calculated isotopic pattern for the peak of $[V^{IV}O(pip)_2(OH)]^-$ (center) and of $[V^VO_2(pip)_2]^-$ (bottom) revealed respectively at m/z = 688.19 and 687.18 in the ESI-MS spectrum of the system $V^{IV}O^{2+}/Hpip$ 1/2 recorded in the negative-ion mode with a V concentration of 50 μ M.

Fig. S3 Distribution diagram of the complexes formed in the system containing $V^{IV}O^{2+}$ and 8-hydroxyquinoline (Hhq) as a function of pH at molar ratio 1:2 ($V^{IV}O^{2+}$ 1 mM). Figure adapted from E. Garribba, G. Micera, D. Sanna and E. Lodyga-Chruscinska, *Inorg. Chim. Acta*, 2003, **348**, 97-106.

Fig. S4 High field region of the anisotropic EPR spectra recorded on frozen aqueous solutions (120 K) with varying pH of the system V^{IV}O²⁺/H₂hqs at molar ratio 1/2 (V^{IV}O²⁺ 4 mM). Figure adapted from E. Garribba, G. Micera, D. Sanna and E. Lodyga-Chruscinska, *Inorg. Chim. Acta*, 2003, **348**, 97-106.

Fig. S5 Experimental (top) and calculated (bottom) isotopic pattern for the peak of $[VO(Hhqs)_2+H]^+$ revealed at m/z = 515.95 in the ESI-MS spectrum of the system V^{IV}O²⁺/H₂hqs 1/2 recorded in the positive-ion mode with a V concentration of 50 μ M.

Fig. S6 Experimental (top) and calculated (bottom) isotopic pattern for the peak of $[V^{IV}O(hqs)_2]^{2-}$ revealed at m/z = 256.46 in the ESI-MS spectrum of the system $V^{IV}O^{2+}/H_2hqs$ 1/2 recorded in the negative-ion mode with a V concentration of 50 μ M.

Fig. S7 Optimized structures of the possible isomers of *cis*- $[VO(hqs)_2(MeIm)]^{2-}$ formed by V^{IV}O²⁺, H₂hqs and MeIm: a) *OC*-6-44; b) *OC*-6-24; c) *OC*-6-23; d) *OC*-6-42. Hydrogen atoms are omitted for clarity.

Fig. S8 ESI-MS spectrum of ubiquitin (50 μ M).

Fig. S9 Deconvoluted ESI-MS spectrum of ubiquitin (50 μ M).

Fig. S10 Full ESI-MS spectra recorded in the systems with Ub (top) and with $V^{IV}O^{2+}/Hpip/Ub$ (bottom). Ub concentration was 50 μ M and molar ratio V/Ub was 3/1. The peaks due to the formation of the adducts between VOL and VOL₂ moieties and Ub are also shown.

Fig. S11 ESI-MS spectrum of lysozyme (50 μ M).

Fig. S12 Deconvoluted ESI-MS spectrum of lysozyme (50 μ M).

Fig. S13 Deconvoluted ESI-MS spectra recorded on the system containing $V^{IV}O^{2+}/Hpip$ 1/2 and lysozyme (50 µM): molar ratio V/Lyz 2/1 (top), 3/1 (center) and 5/1 (bottom).

Magnetic field / mT

Fig. S14 High field region of the anisotropic EPR spectra recorded on frozen solutions (120 K) containing: a) V^{IV}O²⁺/Hpip/MeIm 1/2/4; b) V^{IV}O²⁺/Hpip/Lyz 1/2/1; c) V^{IV}O²⁺/Hpip/Lyz 2/4/1; d) V^{IV}O²⁺/Hpip/Lyz 3/6/1; e) V^{IV}O²⁺/Hpip 1/2. V^{IV}O²⁺ concentration was 1.0×10^{-3} M in all the systems. The $M_{\rm I} = 7/2$ resonances of [VO(Hpip)₂(MeIm)]²⁺, [VO(Hpip)₂]²⁺ and *cis*-[VO(Hpip)₂(H₂O)]²⁺ are indicated with **I**, **II** and **III**. The resonances of the binary species [VO(Hpip)₂]²⁺ and *cis*-[VO(Hpip)₂(H₂O)]²⁺ are also denoted with the dotted lines.

Fig. S15 ESI-MS spectrum recorded on the system containing $V^{IV}O^{2+}/H_2hqs$ 1/2 and lysozyme (50 μ M) with molar ratio V/Lyz 4/1.