Synthesis of alkynyltellurides mediated by K$_3$PO$_4$ and DMSO

Manoela do Sacramento,a Larissa Menezes,a Bruna Goldani,a Gelson Perin,a
Marcio S. Silva,a Thiago Barcellosb and Diego Alvesa*

a LASOL - CCQFA, Universidade Federal de Pelotas - UFPel - P.O. Box 354 - 96010-900, Pelotas, RS, Brazil.
b Laboratory of Biotechnology of Natural and Synthetic Products, University of Caxias do Sul, Caxias do Sul, RS, Brazil.

Corresponding author e-mail: diego.alves@ufpel.edu.br
General Information: The reactions were monitored by TLC carried out on Merck silica gel (60 F254) by using UV light as visualizing agent and 5% vanillin in 10% H₂SO₄ and heat as developing agents. Baker silica gel (particle size 0.040–0.063mm) was used for flash chromatography. Hydrogen nuclear magnetic resonance spectra (¹H NMR) were obtained at 400 MHz on Bruker Avance III HD spectrometer. Spectra were recorded in CDCl₃ solutions. Chemical shifts are reported in ppm, referenced to tetramethylsilane (TMS) as the external reference. Coupling constants (J) are reported in Hertz. Abbreviations to denote the multiplicity of a particular signal are s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), sex (sextet) and m (multiplet). Carbon-13 nuclear magnetic resonance spectra (¹³C NMR) were obtained at 100 MHz on Bruker Avance HD III spectrometer. Chemical shifts are reported in ppm, referenced to the solvent peak of CDCl₃. Low-resolution mass spectra were obtained with a Shimadzu GCMS-QP 2010 Plus mass spectrometer. High-resolution mass spectra (HRMS) were recorded on a Bruker Micro TOF-QII spectrometer 10416.

General procedure for the synthesis of alkynyltellurides 3a-s: To a 5 mL Schlenk tube equipped with a small magnetic stirring bar, containing a solution of an appropriated alkyne (1a-m; 0.5 mmol) in DMSO (1.5 mL), K₃PO₄ (5 mol%) and the corresponding diorganyl ditellurides (2a-f; 0.25 mmol) were added. The mixture was stirred at 25 °C for the time indicated in Table 2. The reaction mixture was then diluted with ethyl acetate (30 mL) and washed with distilled H₂O (3 x 30 mL). The organic phase was dried with MgSO₄ and concentrated in vacuum and the crude product was purified by column chromatography on silica gel using a hexane or a mixture of hexane/ethyl acetate as the eluent to afford the desired products.

Phenyl(phenylethynyl)tellane (3a): Yield: 0.143 g (93%); yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.73 – 7.68 (m, 2H), 7.45 – 7.43 (m, 2H), 7.31 – 7.21 (m, 6H). ¹³C NMR (CDCl₃, 100 MHz) 135.0 (2C), 131.8 (2C), 129.6 (2C), 128.5, 128.2 (2C), 127.8, 123.2, 114.1, 113.1, 47.6. MS (relative intensity) m/z: 308 (M⁺, 6), 178 (100), 101 (14), 77 (15), 44 (18). HRMS calculated for C₁₄H₁₁Te [M + H]⁺: 308.9923. Found: 308.9915.

Phenylethynyl)(p-tolyl)tellane (3b): Yield: 0.150 g (93%); yellow solid; mp 61 – 64 °C. ¹HNMR (CDCl₃, 400 MHz) δ 7.63 (d, J = 8.2 Hz, 2H), 7.44 – 7.42 (m, 2H), 7.32 – 7.26 (m, 3H), 7.08 – 7.06 (m, 2H), 2.33 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 138.1, 135.7 (2C), 131.8 (2C),
(4-Methoxyphenyl)(phenylethynyl)tellane (3c): Yield: 0.146 g (86%); yellow solid; mp 67 - 68 °C. 1H NMR (CDCl₃, 400 MHz): δ 7.70 (d, J = 8.8 Hz, 2H), 7.43 – 7.40 (m, 2H), 7.30 – 7.26 (m, 3H), 6.82 (d, J = 8.8 Hz, 2H), 3.77 (s, 3H). 13C NMR (CDCl₃, 100 MHz): δ 160.0, 138.2 (2C), 131.8 (2C), 128.4, 128.1 (2C), 123.4, 115.6 (2C), 113.0, 101.3, 55.1, 47.9. MS (relative intensity) m/z: 322 (M⁺, 13), 192 (100), 189 (12), 101 (13), 65 (10). HRMS calculated for C₁₅H₁₂Te [M⁺]: 322.0001. Found: 322.0016.

(4-Chlorophenyl)(phenylethynyl)tellane (3d): Yield: 0.152 g (89%); white solid; mp 107 – 110 °C. 1H NMR (CDCl₃, 400 MHz): δ 7.63 (d, J = 8.1 Hz, 2H), 7.46 – 7.21 (m, 7H). 13C NMR (CDCl₃, 100 MHz): δ 136.3 (2C), 134.4, 131.9 (2C), 129.9 (2C), 128.7, 128.2 (2C), 123.1, 114.6, 110.7, 47.1. MS (relative intensity) m/z: 342 (M⁺, 12), 212 (100), 176 (20), 151 (6), 101 (22), 75 (19). HRMS calculated for C₁₄H₉ClTe [M⁺]: 341.9533. Found: 341.9461.

2-((phenylethynyl)tellanyl)thiophene (3e): Yield: 0.089 g (62%); yellow solid; mp 54 – 57 °C. 1H NMR (CDCl₃, 400 MHz) δ (ppm) = 7.52 – 7.50 (m, 2H), 7.41 –7.38 (m, 2H), 7.28 – 7.26 (m, 3H), 7.0 – 6.98 (m, 1H). 13C NMR (CDCl₃, 100 MHz) δ 140.9, 134.8, 131.9 (2C), 128.9, 128.6, 128.1 (2C), 123.1, 111.9, 98.2, 47.9. MS (relative intensity) m/z: 314 (M⁺, 9), 185 (14), 184 (100), 152 (11), 139 (13), 101 (16). HRMS calculated for C₁₂H₉STe [M⁺ + H]⁺: 314.9487. Found: 314.9490.

Butyl(phenylethynyl)tellane (3f): Yield: 0.058 g (40%); orange oil. 1H NMR (CDCl₃, 400 MHz) δ 7.42 – 7.39 (m, 2H), 7.31 – 7.26 (m, 3H), 2.88 (t, J = 7.4 Hz, 2H), 1.91 (quint. J = 7.4 Hz, 2H), 1.45 (sex. J = 7.4 Hz, 2H), 0.95 (t, J = 7.4 Hz, 3H). 13C NMR (CDCl₃, 100 MHz): δ 131.6 (2C), 128.1 (2C), 123.7, 111.3, 44.5, 33.6, 24.6, 13.3, 9.9. MS (relative intensity) m/z: 288 (M⁺, 22), 286 (21), 232 (20), 143 (9), 129 (11), 102 (100), 75 (19), 57 (26), 41 (31). HRMS calculated for C₁₂H₁₄Te [M⁺]: 288.0158. Found: 288.0175.
(2-Methoxyphenyl)ethynyl)(phenyl)tellane (3g): Yield: 0.150 g (89%); yellow oil.

1H NMR (CDCl$_3$, 400 MHz) δ 7.76 – 7.71 (m, 2H); 7.42 – 7.39 (m, 1H); 7.25 – 7.21 (m, 4H); 6.88 (td, $J = 7.5$ Hz; 1H); 6.86 – 6.81 (m, 1H); 3.84 (s, 3H). 13C NMR (CDCl$_3$, 100 MHz) δ 160.2, 134.5 (2C), 133.5, 129.9, 129.5 (2C), 127.5, 120.2, 113.6, 112.4, 110.6, 110.4, 55.6, 51.2. MS (relative intensity) m/z: 338 (M$^+$, 19), 208 (100), 178 (11), 165 (27), 131 (51), 88 (15), 77 (37), 44 (22). HRMS calculated for C$_{14}$H$_{13}$OTe [M+H$^+$]: 339.0029. Found: 339.0018.

Phenyl(m-tolylethynyl)tellane (3h): Yield: 0.130 g (81%); Yellow oil. 1H NMR (CDCl$_3$, 400 MHz) δ 7.82 – 7.79 (m, 2H), 7.37 – 7.32 (m, 5H), 7.30 – 7.26 (m, 1H), 7.20 – 7.17 (m, 1H), 2.38 (s, 3H). 13C NMR (CDCl$_3$, 100 MHz) δ 137.9, 135.0 (2C), 132.4, 129.7 (2C), 129.5, 128.9, 128.1, 127.8, 123.1, 114.4, 113.2, 46.9, 21.2. MS (relative intensity) m/z: 322 (M$^+$, 12), 192 (100), 165 (8), 115 (20), 77 (10), 51 (11). HRMS calculated for C$_{15}$H$_{13}$Te [M+H$^+$]: 323.0079. Found: 323.0065.

Phenyl(p-tolylethynyl)tellane (3i): Yield: 0.145 g (90%); yellow solid; mp 59 - 62 °C. 1H NMR (CDCl$_3$, 400 MHz) δ 7.72 – 7.69 (m, 2H), 7.35 (d, $J = 7.9$ Hz, 2H), 7.24 – 7.22 (m, 3H), 7.10 (d, $J = 7.9$ Hz, 2H), 2.33 (s, 3H). 13C NMR (CDCl$_3$, 100 MHz): δ 138.8, 134.9 (2C), 131.8 (2C), 129.6 (2C), 128.9 (2C), 127.7, 120.3, 114.3, 113.3, 46.3, 21.4. MS (relative intensity) m/z: 322 (M$^+$, 11), 207 (178), 192 (100), 115 (26), 77(13), 44 (22). HRMS calculated for C$_{15}$H$_{13}$Te [M + H$^+$]: 323.0079. Found: 323.0079.

((4-Ethylphenyl)ethynyl)(phenyl)tellane (3j): Yield: 0.144 g (86%); yellow solid; mp 46 – 48 °C. 1H NMR (CDCl$_3$, 400 MHz) δ 7.72 – 7.69 (m, 2H), 7.40 – 7.37 (m, 2H), 7.25 – 7.21 (m, 3H), 7.14 – 7.11 (m, 2H), 2.62 (q, $J = 7.6$, Hz, 2H), 1.20 (t, $J = 7.6$ Hz, 3H). 13C NMR (CDCl$_3$, 100 MHz): δ 145.1, 134.8 (2C), 131.9 (2C), 129.6 (2C), 127.7 (2C), 127.7, 120.5, 114.4, 113.3, 46.3, 28.7, 15.3. MS (relative intensity) m/z: 336 (M$^+$, 16), 206 (90), 191 (100), 114 (11), 77 (11), 51 (10). HRMS calculated for C$_{16}$H$_{15}$Te [M + H$^+$]: 337.0236, Found: 337.0229.
(4-tert-Butyl)phenylethynyl)(phenyl)tellane (3k): Yield: 0.133 g (73%); yellow solid; mp 67 – 69 °C. 1H NMR (CDCl$_3$, 400 MHz) δ 7.72 – 7.69 (m, 2H), 7.42 – 7.39 (m, 2H), 7.35 – 7.32 (m, 2H), 7.26 – 7.22 (m, 3H), 1.29 (s, 9H). 13C NMR (CDCl$_3$, 100 MHz): δ 151.9, 134.8 (2C), 131.7 (2C), 129.7 (2C), 127.7, 125.2 (2C), 120.3, 114.4, 113.3, 46.3, 34.7, 31.1(3). MS (relative intensity) m/z: 364 (M$^+$, 14), 291 (13), 234 (34), 219 (100), 141 (9), 77 (9). HRMS calculated for C$_{18}$H$_{18}$Te [M$^+$]: 364.0471, Found: 364.0464.

(4-Chlorophenylethynyl)(phenyl)tellane (3l): Yield: 0.147 g (86%); yellow solid. mp 93 – 96 °C. 1H NMR (CDCl$_3$, 400 MHz) δ 7.73 (d, $J = 7.0$ Hz, 2H), 7.44 – 7.11 (m, 7H). 13C NMR (CDCl$_3$, 100 MHz): 135.3 (2C), 134.6, 133.0 (2C), 129.8 (2C), 128.5 (2C), 128.0, 121.8, 112.9, 112.8, 49.0. MS (relative intensity) m/z: 342 (M$^+$, 11), 212 (100), 176 (21), 100 (8), 77 (12), 51 (17). HRMS calculated for C$_{14}$H$_9$ClTe [M$^+$]: 341.9455. Found: 341.9450.

(Naphthalen-2-ylethynyl)(phenyl)tellane (3m): Yield: 0.159 g (89%); Yellow solid. mp 59 – 62 °C. 1H NMR (CDCl$_3$, 400 MHz) δ 7.95 (s, 1H), 7.77 – 7.73 (m, 5H), 7.50 – 7.41 (m, 3H), 7.27 – 7.23 (m, 3H). 13C NMR (CDCl$_3$, 100 MHz): δ 135.1 (2C), 132.8, 132.7, 131.8, 129.7 (2C), 128.4, 127.8, 127.6, 126.8, 126.5, 120.5, 114.6, 113.1, 48.0. MS (relative intensity) m/z: 358 (M$^+$, 6), 228 (100), 151 (22), 77 (21), 51 (15). HRMS calculated for C$_{18}$H$_{13}$Te [M + H$^+$]: 359.0079, Found: 359.0065.

(Cyclohex-1-en-1-ylethynyl)(phenyl)tellane (3n): Yield: 0.098 g (63%); yellow oil. 1H NMR (CDCl$_3$, 400 MHz) δ 7.75 – 7.68 (m, 2H), 7.30 – 7.27 (m, 3H), 6.20 (m, 1H), 2.23 – 2.18 (m, 4H), 1.72 – 1.59 (m, 4H). 13C NMR (CDCl$_3$, 100 MHz) δ 136.3, 134.6 (2C), 129.6 (2C), 127.6, 121.1, 116.5, 113.5, 43.4, 29.2, 25.5, 22.2, 21.3. MS (relative intensity) m/z: 312 (M$^+$, 35), 308 (19), 165 (86), 153 (49), 103 (21), 77 (100), 51 (51). HRMS calculated for C$_{14}$H$_{14}$Te [M$^+$]: 312.0158. Found: 312.0154.

Hept-1-yn-1-yl(phenyl)tellane (3o): Yield: 0.107 g (71%); orange oil. 1H NMR (CDCl$_3$, 400 MHz) δ 7.69 – 7.64 (m, 2H), 7.25 – 7.22 (m, 3H), 2.56 (t, $J = 7.1$ Hz, 2H), 1.57
(3,3-Dimethylbut-1-yn-1-yl)(phenyl)tellane (3p): Yield: 0.043 g (30%); yellow oil.

1H NMR (CDCl₃, 400 MHz) δ 7.70 – 7.64 (m, 2H), 7.31 – 7.23 (m, 3H), 1.34 (s, 9H).

13C NMR (CDCl₃, 100 MHz) δ 134.0 (2C), 129.5 (2C), 127.4, 124.4, 113.5, 33.5, 31.1 (3C), 29.7. MS (relative intensity) m/z: 288 (M⁺, 19), 207 (13), 143 (100), 128 (30), 77 (28), 53 (11), 41 (19). HRMS calculated for C₁₂H₁₄O₂Te [M⁺]: 288.0158. Found: 288.0173.

Ethyl 3-(phenyltellanyl)propionate (3q): Yield: 0.122 g (80%); orange oil.

1H NMR (CDCl₃, 400 MHz) δ 7.77 – 7.74 (m, 2H), 7.38 – 7.28 (m, 3H), 4.25 (q, J = 7.1 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H).

13C NMR (CDCl₃, 100 MHz) δ 152.0, 136.3 (2C), 129.9 (2C), 128.7, 110.8, 107.2, 61.8, 55.4, 13.9. MS (relative intensity) m/z: 304 (M⁺, 21), 232 (12) 129 (91), 102 (100), 77 (62), 51 (74), 44 (8). HRMS calculated for C₁₁H₁₁O₂Te [M⁺H⁺]: 304.9821. Found: 304.9811.

3-(phenyltellanyl)prop-2-yn-1-ol (3r): Yield: 0.084 g (64%); yellow oil.

1H NMR (CDCl₃, 400 MHz) δ 7.71 – 7.67 (m, 2H), 7.29 – 7.21 (m, 3H), 4.48 (s, 2H), 2.74 (s, 1H).

13C NMR (CDCl₃, 100 MHz) δ 135.4 (2C), 129.6 (2C), 128.0, 113.2, 112.3, 52.0, 44.5. MS (relative intensity) m/z: 262 (M⁺, 11), 115 (72), 77 (86), 55 (23), 44 (100). HRMS calculated for C₉H₈OTe [M⁺]: 261.9637. Found: 261.9633.

2-Methyl-4-(phenyltellanyl)but-3-yn-2-ol (3s): Yield: 0.078 g (54%); yellow oil.

1H NMR (CDCl₃, 400 MHz) δ (ppm) = 7.67-7.64 (m, 2H); 7.28-7.22 (m, 3H); 2.34 (s, 1H); 1.57 (s, 6H).

13C NMR (CDCl₃, 100 MHz) δ (ppm) = 134.8 (2C), 129.7 (2C), 127.8, 119.7, 112.7, 66.3, 40.0, 31.4. MS (relative intensity) m/z: 290 (10), 272 (11), 141 (100), 102 (26). HRMS calcd. for C₁₁H₁₂OTe [M⁺]: 289.9945. Found: 289.9945.
SELECTED SPECTRA

Figure 1. 1H NMR (400 MHz) spectrum for compound 3a in CDCl$_3$.

Figure 2. 13C NMR (100 MHz) spectrum for compound 3a in CDCl$_3$.
Figure 3. 1H NMR (400 MHz) spectrum for compound 3b in CDCl$_3$.

Figure 4. 13C NMR (100 MHz) spectrum for compound 3b in CDCl$_3$.
Figure 5. 1H NMR (400 MHz) spectrum for compound 3c in CDCl$_3$.

Figure 6. 13C NMR (100 MHz) spectrum for compound 3c in CDCl$_3$.
Figure 7. 1H NMR (400 MHz) spectrum for compound 3d in CDCl$_3$.

Figure 8. 13C NMR (100 MHz) spectrum for compound 3d in CDCl$_3$.
Figure 9. 1H NMR (400 MHz) spectrum for compound 3e in CDCl$_3$.

Figure 10. 13C NMR (100 MHz) spectrum for compound 3e in CDCl$_3$.
Figure 11. 1H NMR (400 MHz) spectrum for compound 3f in CDCl$_3$.

Figure 12. 13C NMR (100 MHz) spectrum for compound 3f in CDCl$_3$.
Figure 13. 1H NMR (400 MHz) spectrum for compound 3g in CDCl$_3$.

Figure 14. 13C NMR (100 MHz) spectrum for compound 3g in CDCl$_3$.
Figure 15. 1H NMR (400 MHz) spectrum for compound 3h in CDCl$_3$.

Figure 16. 13C NMR (100 MHz) spectrum for compound 3h in CDCl$_3$.
Figure 17. 1H NMR (400 MHz) spectrum for compound 3i in CDCl$_3$.

Figure 18. 13C NMR (100 MHz) spectrum for compound 3i in CDCl$_3$.
Figure 19. 1H NMR (400 MHz) spectrum for compound 3j in CDCl$_3$.

Figure 20. 13C NMR (100 MHz) spectrum for compound 3j in CDCl$_3$.
Figure 21. 1H NMR (400 MHz) spectrum for compound 3k in CDCl$_3$.

Figure 22. 13C NMR (100 MHz) spectrum for compound 3k in CDCl$_3$.
Figure 23. 1H NMR (400 MHz) spectrum for compound 3l in CDCl$_3$.

Figure 24. 13C NMR (100 MHz) spectrum for compound 3l in CDCl$_3$.
Figure 25. 1H NMR (400 MHz) spectrum for compound 3m in CDCl$_3$.

Figure 26. 13C NMR (100 MHz) spectrum for compound 3m in CDCl$_3$.
Figure 27. 1H NMR (400 MHz) spectrum for compound 3n in CDCl$_3$.

Figure 28. 13C NMR (100 MHz) spectrum for compound 3n in CDCl$_3$.
Figure 29. 1H NMR (400 MHz) spectrum for compound 3o in CDCl$_3$.

Figure 30. 13C NMR (100 MHz) spectrum for compound 3o in CDCl$_3$.
Figure 31. 1H NMR (400 MHz) spectrum for compound 3p in CDCl$_3$.

Figure 32. 13C NMR (100 MHz) spectrum for compound 3p in CDCl$_3$.
Figure 33. 1H NMR (400 MHz) spectrum for compound 3q in CDCl$_3$.

Figure 34. 13C NMR (100 MHz) spectrum for compound 3q in CDCl$_3$.

Figure 35. 1H NMR (400 MHz) spectrum for compound 3r in CDCl$_3$.

Figure 36. 13C NMR (100 MHz) spectrum for compound 3r in CDCl$_3$.
Figure 37. 1H NMR (400 MHz) spectrum for compound 3s in CDCl$_3$.

Figure 38. 13C NMR (100 MHz) spectrum for compound 3s in CDCl$_3$.