Supporting Information

Potassium manganese hexacyanoferrate/graphene as high-

performance cathode for potassium-ion batteries

Yunpo Sun,^a Chunli Liu,^a Jian Xie^{*a,b} Dagao Zhuang,^c Wenquan Zheng^c and Xinbing Zhao^{a,b}

^a State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China. E-mail: xiejian1977@zju.edu.cn; Fax: +86-571-87951451; Tel: +86-571-87952181

^b Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou 310027, P. R. China ^c Shanghai Han Xing Science and Technology Co., Ltd., Shanghai 201322, P. R. China

Fig. S1 XRD patterns of pristine and dehygrated KPB.

2

Fig. S3 XPS survey spectrum of KPB/G sample.

Fig. S4 (a) SEM image of the graphene and (b) TEM image of bare KPB.

Fig. S5 SEM image of bare KPB after ball milling.

Fig. S6 Voltage profiles of KPB/G after high-vacuum dehydration.

Fig. S7 Voltage profiles of KPB/G at a higher active material loading.

Table S1. Fitting results of the Nyquist plots using the equivalent circuit.

Sampla	$P(\mathbf{O})$	P(0)	Q_1		P(0)	Q_2	
Sample	Λ_{e} (22)	$\Lambda_{\rm f}(\Omega)$	Y	п	$\Lambda_{\rm ct}$ (22)	Y	п
KPB	50.3	427.5.	5.5×10 ⁻⁶	0.84	1167.0	2.4×10 ⁻⁵	0.88
KPB/G	30.1	76.8.	5.3×10 ⁻⁶	0.83	506.7	3.7×10 ⁻⁵	0.90

Table S2. Comparison of electrochemical performance of potassium Prussian blue cathodes.

Material	Current density (mA g ⁻¹)	Initial capacity (mAh g ⁻¹)	Cycle number	Capacity retentio	Reference
KPB/G	<u>(IIIA g)</u> 75	<u>124.0</u>	120	96.9%	This work
KPB/G	750	115.6	500	89.3%	This work
KPB/G	1500	99.3	300	82.4%	This work
$K_2Mn[Fe(CN)_6]$	50	~100	30	~84%	[1]
$K_{1.89}Mn[Fe(CN)_6]_{0.92} \cdot 0.75H_2O$	150	~110	100	~77%	[2]
$K_{1.68}Fe_{1.09}Fe(CN)_6 \cdot 2.1H_2O$	20	110.5	100	81%	[3]
$K_{1.88}Zn_{2.88}[Fe(CN)_6]_2 \cdot 5 H_2O$	13.8	55.6	100	~95%	[4]
$K_{0.3}Ti_{0.75}Fe_{0.25}[Fe(CN)_6]_{0.95} \cdot 2.8H_2$ O	100	113	100	64.7%	[5]

References

- 1 X. Jiang, T. R. Zhang, L. Q. Yang, G. C. Li and J. Y. Lee, *Chemelectrochem*, 2017, 4, 2237–2242.
- L. G. Xue, Y. T. Li, H. C. Gao, W. D. Zhou, X. J. Lü, W. Kaveevivitchai, A. Manthiram and J. B. Goodenough, *J. Am. Chem. Soc.*, 2017, 139, 2164–2167.
- 3 Y. S. Luo, B. L. Shen, B. S. Guo, L. Y. Hu, Q. J. Xu, R. M. Zhan, Y. Q. Zhang, S. J. Bao and M. W. Xu, J. Phys. Chem. Solids, 2018, 122, 31–35.
- 4 X. Y. Wu, Z. L. Jian, Z. F. Li and X. L. Ji, *Electrochem. Commun.*, 2017, 77, 54–57.
- 5 J. W. Heo, M. S. Chae, J. Hyoung and S. T. Hong, *Inorg. Chem.*, 2019, **58**, 3065–3072.