Structural Diversity of the complexes of monovalent metal d^{10} ions

with macrocyclic aggregates if iso-tellurazole N-oxides

Jin Wang, Peter C. Ho, James F. Britten, Valerie Tomassetti and Ignacio Vargas-Baca*

McMaster University, Department of Chemistry and Chemical Biology, 1280 Main Street West,
Hamilton, Ontario, Canada L0R 1W0.

* To whom correspondence should be addressed. E-mail: vargas@chemistry.mcmaster.ca

SUPPLEMENTARY INFORMATION
Figure S1. Superposition of the two crystallographically independent molecular structures in the crystal of \([\text{Au}_2\text{Cl}_2(1b_4)]\).

Figure S2. ORTEP displaying the superposition of three orientations of the molecular structure of the complex \([\text{Ag}_2(\mu-\text{CF}_3\text{SO}_3)_2(1b_6)]\text{Ag}_2(\text{CF}_3\text{SO}_3)_2\). Hydrogen atoms, are omitted for clarity; displacement ellipsoids calculated at 75%.)
NMR spectroscopy

Figure S3. 1H spectrum of [Cu(1b$_4$)(CF$_3$SO$_3$)] in CD$_2$Cl$_2$. Asterisks mark the resonances of Et$_2$O in trace amounts.

Figure S4. 13C spectrum of [Cu(1b$_4$)(CF$_3$SO$_3$)] in CD$_2$Cl$_2$. Asterisks mark the resonances of Et$_2$O in trace amounts.
Figure S5. 1H spectrum of [Au$_2$Cl$_2$(1b$_4$)] in CD$_2$Cl$_2$. The asterisk marks a resonance of residual Et$_2$O.

Figure S6. 1H spectrum of [[Ag$_2$(μ-CF$_3$SO$_3$)$_2$(1b$_6$)]Ag$_2$(CF$_3$SO$_3$)$_2$] in CD$_3$CN. The asterisk marks a resonance of crystallization CH$_2$Cl$_2$.
Figure S7. 13C spectrum of $\{[\text{Ag}_2(\mu-\text{CF}_3\text{SO}_3)_2(1b)]\text{Ag}_2(\text{CF}_3\text{SO}_3)_2}\}$ in CD$_3$CN. The asterisk marks a resonance of crystallization CH$_2$Cl$_2$.

Figure S8. 1H spectrum of $\{[\text{Ag}_2(\mu-\text{CF}_3\text{SO}_3)_2(1c)]\text{Ag}_2(\text{CF}_3\text{SO}_3)_2}\}$ in CD$_2$Cl$_2$.
Figure S9. 13C spectrum of \{[Ag$_2$(μ-CF$_3$SO$_3$)$_2$(1c$_0$)]Ag$_2$(CF$_3$SO$_3$)$_2$\} in CD$_2$Cl$_2$.