Facile detection of organophosphorus nerve agent mimic (DCP) through a new quinoline-based ratiometric switch

Saswati Gharami, Krishnendu Aich, Sangita Das, Lakshman Patra and Tapan Kumar Mondal

Department of Chemistry, Jadavpur University, Kolkata-700 032, India.
E-mail: tapank.mondal@jadavpuruniversity.in

CONTENTS

1. Mole ratio plot..
2. Determination of detection limit..
3. Lifetime decay profile..
4. Determination of Quantum yield...
5. 1H NMR, 13C NMR and HRMS spectra of BIMQ..
6. 1H NMR, 13C NMR, 31P NMR and HRMS spectra of BIMQ-DCP..
7. Computational study...

Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019
1. Mole ratio plot

![Figure S1](image)

Figure S1: Plot of emission intensity at 471 nm of BIMQ (10 μM) depending upon the DCP concentration.

2. Determination of detection limit

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of BIMQ without DCP was measured by 10 times and the standard deviation of blank measurements was determined. The detection limit (DL) of BIMQ for DCP was determined from the following equation: DL = K × Sb/S, Where K = 2 or 3 (we take 3 in this case); Sb is the standard deviation of the blank solution; S is the slope of the calibration curve.

From the graph we get slope = 3.03×10^{10}, and Sb value is 947.6 Thus using the formula we get the Detection Limit = 9.38×10^{-8} M i.e. BIMQ can detect DCP in this minimum concentration by fluorescence techniques.

![Figure S2](image)

Figure S2: The linear response curve of at emission intensity at 471 nm of BIMQ depending on DCP concentration.
3. Lifetime decay profile

Figure S3: Lifetime decay profile of BIMQ and BIMQ-DCP

4. Determination of Quantum yield of BIMQ

For measurement of the quantum yields of BIMQ and its reaction product with DCP (BIMQ-DCP), we recorded the absorbance of the compounds in CHCl₃ solution. The emission spectra were recorded using the maximal excitation wavelengths and the integrated areas of the emission-corrected spectra were measured. The quantum yields were then calculated by comparison with quinine sulfate ($\phi_s = 0.54$ in 0.5M H₂SO₄) as reference using the following equation:

$$\Phi_x = \Phi_s \times \left(\frac{I_x}{I_s}\right) \times \left(\frac{A_s}{A_x}\right) \times \left(\frac{n_x}{n_s}\right)^2$$

Where, x & s indicate the unknown and standard solution respectively, Φ is the quantum yield, I is the integrated area under the fluorescence spectra, A is the absorbance and n is the refractive index of the solvent. We calculated the quantum yields of BIMQ and BIMQ-DCP using the above equation and the values are 0.31 and 0.48 respectively.
5. 1H NMR spectrum of BIMQ

Figure S4: 1H NMR (400 MHz) spectrum of the probe (BIMQ) in CDCl$_3$

13C NMR spectrum of BIMQ
Figure S5: 13C NMR (100 MHz) spectrum of the probe (BIMQ) in DMSO-d_6

Mass spectrum (HRMS) of BIMQ

![Mass spectrum](image)

Calcd. for C$_{17}$H$_{14}$N$_3$O [M + H]$^+$ (m/z) = 276.1137; found = 276.1650

Figure S6: HRMS of the probe (BIMQ)
\(^1\)H NMR spectrum of BIMQ-DCP

Figure S7: \(^1\)H NMR (400 MHz) spectrum of the BIMQ-DCP in DMSO-d\(_6\).
13C NMR spectrum of BIMQ-DCP

Figure S8: 13C NMR (100 MHz) spectrum of the BIMQ-DCP in DMSO-d_6

31P NMR spectrum of BIMQ-DCP
Figure S9: 31P NMR (100 MHz) spectrum of the BIMQ-DCP in CDCl$_3$

Mass spectrum (HRMS) of BIMQ-DCP

Calcd. for C$_{19}$H$_{17}$N$_3$O$_3$P [M+2Na$^+$+Cl$^-$]$^+$
(m/z) = 447.0491; found = 447.2079

Figure S10: HRMS of BIMQ-DCP

6. Computational Study
Figure S11: Contour plots of some selected molecular orbitals of BIMQ

Table S1: Vertical electronic transition of BIMQ and BIMQ-DCP calculated by TDDFT/CPCM method
<table>
<thead>
<tr>
<th>Compd.</th>
<th>Wavelength (nm)</th>
<th>Energy (eV)</th>
<th>Osc. Strength (f)</th>
<th>Key transitions</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIMQ</td>
<td>357.9</td>
<td>3.4636</td>
<td>0.3933</td>
<td>(94%)HOMO→LUMO</td>
<td>π→π*</td>
</tr>
<tr>
<td></td>
<td>329.4</td>
<td>3.7641</td>
<td>0.3283</td>
<td>(73%)HOMO-1→LUMO</td>
<td>π→π*</td>
</tr>
<tr>
<td></td>
<td>316.6</td>
<td>3.9164</td>
<td>0.0264</td>
<td>(85%)HOMO-2→LUMO</td>
<td>π→π*</td>
</tr>
<tr>
<td></td>
<td>264.6</td>
<td>4.6850</td>
<td>0.0151</td>
<td>(74%)HOMO-1→LUMO+1</td>
<td>π→π*</td>
</tr>
<tr>
<td></td>
<td>258.2</td>
<td>4.8018</td>
<td>0.0508</td>
<td>(83%)HOMO-2→LUMO+1</td>
<td>π→π*</td>
</tr>
<tr>
<td>BIMQ-DCP</td>
<td>496.6</td>
<td>2.4965</td>
<td>0.0257</td>
<td>(74%)HOMO→LUMO</td>
<td>π→π*</td>
</tr>
<tr>
<td></td>
<td>443.2</td>
<td>2.7972</td>
<td>0.3032</td>
<td>(65%)HOMO-1→LUMO</td>
<td>π→π*</td>
</tr>
<tr>
<td></td>
<td>439.2</td>
<td>2.8227</td>
<td>0.3346</td>
<td>(80%)HOMO-2→LUMO</td>
<td>π→π*</td>
</tr>
<tr>
<td></td>
<td>309.1</td>
<td>4.0110</td>
<td>0.0853</td>
<td>(46%)HOMO→LUMO+1</td>
<td>π→π*</td>
</tr>
<tr>
<td></td>
<td>280.2</td>
<td>4.4240</td>
<td>0.0454</td>
<td>(59%)HOMO-1→LUMO+1</td>
<td>π→π*</td>
</tr>
</tbody>
</table>

Table S2: The comparison of the present probe (BIMQ) with some previous probes for DCP

<table>
<thead>
<tr>
<th>Fluorophore used</th>
<th>Type of response</th>
<th>Response Time (min or sec)</th>
<th>Test kit</th>
<th>Detection limit</th>
<th>Detection in gaseous phase</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>No fluorophore; only malononitrile derivative</td>
<td>Colorimetric, fluorometric</td>
<td>Within minutes</td>
<td>Yes (Dipstick method)</td>
<td>0.10 μM</td>
<td>Yes</td>
<td>Analyst, 2018, 143, 4171</td>
</tr>
<tr>
<td>Diphenylamine-Tetraphenylethylene-pyridine (DPA-TPE-Py)</td>
<td>Aggregation based Fluorometric (ratiometric)</td>
<td>30 sec</td>
<td>Yes (Dipstick method)</td>
<td>1.82 ppb</td>
<td>Yes</td>
<td>J. Mater. Chem. C, 2016, 4, 10105</td>
</tr>
<tr>
<td>Rhodamine B</td>
<td>Colorimetric, fluorometric (turn-on)</td>
<td>Few Sec</td>
<td>Not mentioned</td>
<td>1.1×10⁻⁷ M and 2.4×10⁻⁸ M</td>
<td>Yes</td>
<td>Chem. Commun., 2014, 50, 8640</td>
</tr>
<tr>
<td>Naphthothiazolium conjugated benzothiazole</td>
<td>Chromogenic, fluorogenic (ratiometric)</td>
<td>Within 1 minute</td>
<td>Yes (Dipstick method)</td>
<td>17 nM</td>
<td>Yes</td>
<td>Chem. Commun., 2015,51, 9729</td>
</tr>
<tr>
<td>Compound</td>
<td>Method</td>
<td>Time</td>
<td>Detection Limit</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coumarin-4-dimethylaminoaryl</td>
<td>Fluorometric (ratiometric)</td>
<td>5 minutes</td>
<td>Not mentioned</td>
<td>New J. Chem., 2017, 41, 1653</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhodamine B</td>
<td>Colorimetric, fluorometric (turn-on)</td>
<td>60 Sec</td>
<td>5.5 × 10^{-8} M</td>
<td>RSC Adv., 2014, 4, 24881</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combination of spirobenzopyran and naphthalene</td>
<td>Colorimetric, fluorometric (turn-on)</td>
<td>After 30 seconds</td>
<td>2.1 × 10^{-8} M</td>
<td>RSC Adv., 2015, 5, 28996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoquinolin oximes</td>
<td>Colorimetric, fluorometric (ratiometric)</td>
<td>Within 10 minutes</td>
<td>21 nM</td>
<td>J. Mater. Chem. C, 2017, 5, 7337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No fluorophore in particular</td>
<td>Fluorometric (turn-on)</td>
<td>After 10 seconds</td>
<td>1.94 nM</td>
<td>Anal. Methods, 2018, 10, 1709</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No fluorophore; only hydroxybenzylidene-</td>
<td>Colorimetric, fluorometric (turn-on)</td>
<td>Within minutes</td>
<td>0.10, 0.11 and 0.20 µM</td>
<td>Analyst, 2018, 143, 4171</td>
<td></td>
<td></td>
</tr>
<tr>
<td>naphthalene derivative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No fluorophore</td>
<td>Fluorometric (turn-off)</td>
<td>Almost 2 minutes</td>
<td>0.023 and 0.092 mM</td>
<td>New J. Chem., 2018, 42, 8756</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No fluorophore in particular; fluorene-</td>
<td>Fluorometric (turn-on)</td>
<td>Within 3 seconds</td>
<td>132 ppb</td>
<td>Anal. Methods, 2017, 9, 1748</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrene copolymer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No fluorophore</td>
<td>Fluorometric (ratiometric)</td>
<td>Within 1 minute</td>
<td>0.45 µM</td>
<td>J. Mater. Chem. C, 2017, 5, 7337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinoline</td>
<td>Fluorometric (ratiometric)</td>
<td>Almost 30 seconds</td>
<td>9.38 × 10^{-8} M</td>
<td>Present Work</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>