Supporting information for

FRET-based colorimetric and ratiometric fluorescent probe for Cu\(^{2+}\) with a new trimethylindolin fluorophore

Jiao Zhang,\(^a\) Mei Zhu,\(^b\) Daoyong Jiang,\(^a\) Han Zhang,\(^a\) Luying Li,\(^a\) Guoning Zhang,\(^b\) Yucheng Wang,\(^b\) Chao Feng,\(^c\) Hong Zhao*\(^a\)

\(^a\) School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China

\(^b\) Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China

\(^c\) School of Materials and Chemical Engineering, Bengbu University, Bengbu 233030, P. R. China

* Corresponding author E-mail address: zhaohong@seu.edu.cn
Contents

Fig. S1 The overlap (shown with oblique stripes) between emission of the donor and absorption spectra of the acceptor.

Fig. S2 A plot of absorbance of RhF against Cu²⁺ (0-120 μM).

Fig. S3 A plot of Bensei-Hildebrand obtained from the UV-Vis absorption.

Fig. S4 Changes of the fluorescence spectra of RhF (10 μM) observed upon addition of various metal ions in a CH₃CN/aqueous HEPES buffer (10 mM, pH 7.3; 4:1, v/v).

Fig. S5 Calculations for FRET efficiency.

Fig. S6 Fluorescence titration spectra of RhF (10 μM) in the presence of different concentrations of Cu²⁺ (0-50μM).

Fig. S7 The plot of the emission intensity ratios of RhF at I582/I503 against Cu²⁺ (88-140μM).

Fig. S8 Effect of pH on probe for the detection of Cu²⁺.

Fig. S9 The changes of fluorescence intensity at 503 nm of probe RhF exposed to light for a long time.

Fig. S10 Job’s plot of probe RhF with Cu²⁺ in a CH₃CN/aqueous HEPES buffer (10 mM, pH=7.3; 4:1 v/v).

Fig. S11 ESI-MS spectrum of probe RhF-Cu²⁺ complex.

Fig. S12 ¹H NMR spectra of RhF-Cu²⁺ (a) in DMSO-d₆ with D₂O and RhF (b) in DMSO-d₆.

Fig. S13. XPS of as prepared samples: (A) survey spectra of RhF-Cu²⁺ complex; (B) Cu2p of RhF-Cu²⁺ complex.

Fig. S14 IR spectral data of RhF and RhF-Cu²⁺ complex.

Fig. S15 Effect of water content on probe for the detection of Cu²⁺.

Fig. S16 ESI-MS spectrum of probe RhF.

Fig. S17 ¹H NMR Spectrum of probe RhF.

Fig. S18 ¹³C NMR Spectrum of probe RhF.

Table S1 Comparison of the recently reported probes for the detection of Cu²⁺.
Fig. S1 The overlap (shown with oblique stripes) between emission of the donor and absorption spectra of the acceptor, respectively.

Fig. S2 Absorbance plot of RhF against Cu$^{2+}$ concentration from 0 to 120 µM.
Fig. S3 Bensei-Hildebrand plot of RhF-Cu$^{2+}$ complex obtained from the UV-Vis absorption (absorbance calculated from 555 nm) studies.

Fig. S4 Changes of the fluorescence spectra of RhF (10 μM) observed upon addition of various metal ions in a CH$_3$CN/aqueous HEPES buffer (10 mM, pH 7.3; 4:1, v/v).

Fig. S5 Calculations for FRET efficiency:

Energy transfer efficiency (Φ_{ET}) was evaluated through the following equation: $^{1-4}$

$$
\Phi_{\text{ET}} = 1 - \frac{F'_{D}}{F_D}
$$

where F'$_D$ and F$_D$ denote the donor fluorescence intensity with and without an acceptor respectively in the presence of Cu$^{2+}$ ions.

Fig. S6 Fluorescence titration spectra of RhF (10 μM) in the presence of different concentrations of Cu$^{2+}$ (0-50μM). λ$_{ex}$ = 345 nm.
Fig. S7 The plot of the emission intensity ratios of RhF at 1582/1503 against Cu$^{2+}$ (88-140µM).

Fig. S8 Effect of pH on probe for the detection of Cu$^{2+}$ (based on absorbance data).

Fig. S9 The changes of fluorescence intensity at 503 nm of probe RhF exposed to light for a long time.
Fig. S10 Job’s plot of probe RhF with Cu\(^{2+}\) in a CH\(_3\)CN/aqueous HEPES buffer (10 mM, pH=7.3; 4:1 v/v). Where Xn is the mole fraction of RhF and △Ι is the change (Ι-I\(_0\)) in the absorbance in presence of Cu\(^{2+}\). The total concentration of RhF and Cu\(^{2+}\) was 20μM.

Fig. S11 ESI-MS spectrum of probe RhF-Cu\(^{2+}\) complex.

Fig.S12 \(^1\)H NMR spectra of RhF-Cu\(^{2+}\) (a) in DMSO-\(d_6\) with D\(_2\)O and RhF (b) in DMSO-\(d_6\).
Fig. S13. XPS of as prepared samples: (A) survey spectra of RhF-Cu$^{2+}$ complex; (B) Cu 2p of RhF-Cu$^{2+}$ complex.

Fig. S14 IR spectral data of RhF and RhF-Cu$^{2+}$ complex.

Fig. S15 Effect of water content on probe for the detection of Cu$^{2+}$.
Fig. S16 ESI-MS spectrum of probe RhF.

Fig. S17 1H NMR Spectrum of probe RhF.

Fig. S18 13C NMR Spectrum of probe RhF.
Table S1 Comparison of the recently reported probes for the detection of Cu^{2+}.

<table>
<thead>
<tr>
<th>Probes</th>
<th>$\lambda_{ex}/\lambda_{em}$ (nm)</th>
<th>Detection Limit (µM)</th>
<th>Working system</th>
<th>Operation mode</th>
<th>Analytical application: test strips</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>455/519</td>
<td>0.15</td>
<td>CH$_3$CN-H$_2$O (70:30, v/v, MOPS, 10 mM, pH = 7.0)</td>
<td>Turn-ON</td>
<td>NO</td>
<td>[5]</td>
</tr>
<tr>
<td></td>
<td>290/355, 470</td>
<td>0.46</td>
<td>CH$_3$CN-H$_2$O (3:2, v/v, 10 mM Tris-HCl)</td>
<td>Turn-OFF</td>
<td>NO</td>
<td>[6]</td>
</tr>
<tr>
<td></td>
<td>295/365</td>
<td>0.2</td>
<td>CH$_3$CN-H$_2$O (2:3, v/v)</td>
<td>Turn-ON</td>
<td>NO</td>
<td>[7]</td>
</tr>
<tr>
<td></td>
<td>376/439</td>
<td>14.5</td>
<td>CH$_3$CN</td>
<td>Turn-ON</td>
<td>NO</td>
<td>[8]</td>
</tr>
<tr>
<td></td>
<td>437/637</td>
<td>1.568</td>
<td>CH$_3$CN</td>
<td>Turn-ON</td>
<td>NO</td>
<td>[9]</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>0.29</td>
<td>CH$_3$CN</td>
<td>Turn-ON</td>
<td>NO</td>
<td>[10]</td>
</tr>
<tr>
<td></td>
<td>435/532</td>
<td>0.052</td>
<td>CH$_3$CN-H$_2$O (20:80, v/v, pH=7.4)</td>
<td>Turn-ON</td>
<td>NO</td>
<td>[11]</td>
</tr>
<tr>
<td></td>
<td>419/524</td>
<td>13.05</td>
<td>CH$_3$CN-H$_2$O (99:1, v/v)</td>
<td>Turn-ON</td>
<td>NO</td>
<td>[12]</td>
</tr>
<tr>
<td></td>
<td>420/540, 568</td>
<td>0.12</td>
<td>CH$_3$CN–HEPES (1 : 1, v/v, 20 mM, pH=7.4)</td>
<td>Turn-ON</td>
<td>No</td>
<td>[13]</td>
</tr>
<tr>
<td></td>
<td>345/503, 582</td>
<td>0.01168</td>
<td>CH$_3$CN-aqueous HEPES buffer (4:1, v/v, 10 mM, PH=7.3)</td>
<td>Turn-ON</td>
<td>YES</td>
<td>This work</td>
</tr>
</tbody>
</table>
References

