Electronic Supplementary Information

Water-soluble diboronic acid-based fluorescent sensors recognizing D-sorbitol

Guiqian Fang,‡ a, b, c, d Zhancun Bian,‡ a, b, c, d Daili Liu, a, b, c, d Guiying Wu, a, b, c, d Hao Wang, a, b, c, d Zhongyu Wu* a, b, c, d and Qingqiang Yao* a, b, c, d

a. School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, Shandong, China
b. Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
c. Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China
d. Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, China

*Corresponding authors: E-Mail: wu_med@foxmail.com (Zhongyu Wu), yao_imm@163.com (Qingqiang Yao).
‡These author contributed equally.

Table of Contents

1. UV-vis absorption spectra of sensor 1, 2 and 15c
2. Fluorescence properties of sensors
3. Copies of NMR (1H and 13C) and HRMS spectra

UV-vis absorption spectra of sensor 1, 2 and 15c

Fig. S1 UV-vis absorption spectra of sensor 1, 2 and 15c DMSO/PBS (pH 9, 0.1M) solution (1:99, v/v), at room temperature.
Fluorescence properties of sensors

Fig. S2 A) Fluorescence spectra of sensor 1 (1×10^{-5} M) in the presence of different concentrations of D-sorbitol in DMSO/PBS (pH 9, 0.1M) solution (1:99, v/v), at room temperature; B) The photograph of sensor 1 linear range. C) Benesi-Hildebrand plot of sensor 1/(I - I_0) versus 1/[D-sorbitol].

The calculation process of LOD:

\[
\begin{align*}
I &= 9545110c + 247.19996 \\
R^2 &= 0.98522 \\
S &= 9545110 \\
\delta &= \sqrt{\frac{\Sigma(F_i - F_0)^2}{N - 1}} = 4.87 \text{ (N=5)} \text{ K=3} \\
\text{LOD} &= K \times \delta / S = 1.53 \times 10^{-6} \text{ M}
\end{align*}
\]

Fig. S3 A) Fluorescence spectra of sensor 15a (1×10^{-5} M) in the presence of different concentrations of D-sorbitol in DMSO/PBS (pH 9, 0.1M) solution (1:99, v/v), at room temperature; B) The photograph of sensor 15a linear range. C) Benesi-Hildebrand plot of sensor 15a1/(I - I_0) versus 1/[D-sorbitol].

The calculation process of LOD:

\[
\begin{align*}
I &= 18502600c + 482.6485 \\
R^2 &= 0.9763 \\
S &= 18502600 \\
\delta &= \sqrt{\frac{\Sigma(F_i - F_0)^2}{N - 1}} = 5.02 \text{ (N=5)} \text{ K=3} \\
\text{LOD} &= K \times \delta / S = 8.14 \times 10^{-7} \text{ M}
\end{align*}
\]
Fig. S4 A) Fluorescence spectra of sensor 15b (1×10^{-5} M) in the presence of different concentrations of D-sorbitol in DMSO/PBS (pH 9, 0.1M) solution (1:99, v/v), at room temperature; B) The photograph of sensor 15b linear range. C) Benesi-Hildebrand plot of sensor 15b (1/(I - I_0) versus 1/[D-sorbitol]).

The calculation process of LOD:

\[I = 17165000c + 442.93993 \]

\[R^2 = 0.98234 \]

\[S = 17165000 \]

\[\delta = \sqrt{\frac{\sum (F_i - F_0)^2}{N - 1}} = 4.37 \text{ (N=5) } K=3 \]

LOD = K × δ/S = 7.64×10^{-7} M

Fig. S5 A) Fluorescence spectra of sensor 15c (1×10^{-5} M) in the presence of different concentrations of D-sorbitol in DMSO/PBS (pH 9, 0.1M) solution (1:99, v/v), at room temperature; B) The photograph of sensor 15c linear range. C) Benesi-Hildebrand plot of sensor 15c (1/(I - I_0) versus 1/[D-sorbitol]).

The calculation process of LOD:

\[I = 17508000c + 394.88005 \]

\[R^2 = 0.98496 \]

\[S = 17508000 \]

\[\delta = \sqrt{\frac{\sum (F_i - F_0)^2}{N - 1}} = 4.03 \text{ (N=5) } K=3 \]

LOD = K × δ/S = 6.91×10^{-7} M
Fig. S6 A) Fluorescence spectra of sensor 15d (1×10^{-5} M) in the presence of different concentrations of D-sorbitol in DMSO/PBS (pH 9, 0.1M) solution (1:99, v/v), at room temperature; B) The photograph of sensor 15d linear range. C) Benesi-Hildebrand plot of sensor 15d I/(I - I₀) versus 1/[D-sorbitol].

The calculation process of LOD:

$$\text{LOD} = K \times \frac{\delta}{S} = 1.22 \times 10^{-6} \text{ M}$$

Fig. S7 A) Fluorescence spectra of sensor 15e (1×10^{-5} M) in the presence of different concentrations of D-sorbitol in DMSO/PBS (pH 9, 0.1M) solution (1:99, v/v), at room temperature; B) The photograph of sensor 15e linear range. C) Benesi-Hildebrand plot of sensor 15e I/(I - I₀) versus 1/[D-sorbitol].

The calculation process of LOD:

$$\text{LOD} = K \times \frac{\delta}{S} = 5.48 \times 10^{-7} \text{ M}$$
Fig. S8 Fluorescence spectra of sensor 2 (1×10^{-5} M) in the presence of different carbohydrates (from 0 to 13×10^{-5} M) in DMSO/PBS (pH 9, 0.1M) solution (1:99, v/v), at room temperature.
Fig. S9 Fluorescence spectra of sensor 1 (1×10^{-5} M) in the presence of different carbohydrates (from 0 to 13×10^{-5} M) in DMSO PBS (pH 9, 0.1M) solution (1:99, v/v), at room temperature.
Fig. S10 Fluorescence spectra of sensor 15c (1×10^{-5} M) in the presence of different carbohydrates (from 0 to 13×10^{-5} M) in DMSO/PBS (pH 9, 0.1M) solution (1:99, v/v), at room temperature.

Copies of NMR (^{1}H and ^{13}C) and HRMS spectra

![NMR and HRMS spectra](image)

Fig. S11 ^{1}H NMR spectrum of 2
Fig. S12 13C NMR spectrum of 2

Fig. S13 HRMS spectrum of compound 2
Fig. S14 1H NMR spectrum of 3

Fig. S15 13C NMR spectrum of 3
Fig. S16 HRMS spectrum of compound 3

Fig. S17 1H NMR spectrum of 15a
Fig. S18 13C NMR spectrum of 15a

Fig. S19 HRMS spectrum of compound 15a
Fig. S20 1H NMR spectrum of 15b

Fig. S21 13C NMR spectrum of 15b
Fig. S22 HRMS spectrum of compound 15b

Fig. S23 1H NMR spectrum of 15c
Fig. S24 13C NMR spectrum of 15c

Fig. S25 HRMS spectrum of compound 15c
Fig. S26 1H NMR spectrum of 15d

Fig. S27 13C NMR spectrum of 15d
Fig. S28 HRMS spectrum of compound 15d

Fig. S29 1H NMR spectrum of 15e
Fig. S30 13C NMR spectrum of 15e

Fig. S31 HRMS spectrum of compound 15e