Supporting Information

Deep eutectic solvent promoted synthesis of structurally diverse hybrid molecules with privileged heterocyclic substructures

Esha Rushell, Yogesh Kumar Tailor, Sarita Khandewal, Kanchan Verma, Monu Agarwal, Mahendra Kumar*
Department of Chemistry, University of Rajasthan, Jaipur-302004 (India).
E-mail: mahendrakpathak@gmail.com
Mob. No. 9414729863

Table of Contents

- Experimental Section
- Spectral details
- Copies of 1H and 13C NMR

- Experimental Section
General procedure

The melting points of all the synthesized compounds were determined on electric melting point apparatus and are uncorrected. The aldehydes, 1,3-diketones and hydantoin used in the synthesis of heterocycles were purchased from the commercial sources and were used as such. The purity of all the synthesized compounds was checked by TLC. The solid compound was purified by recrystallization from absolute ethanol without using any column chromatography. 1H NMR and 13C NMR were recorded on JEOL 400MHz and 100MHz NMR spectrometer, respectively. Analytical and spectral data of the synthesized heterocycles are also included.

Synthesis of deep eutectic solvents based on guanidine salt and urea: Deep eutectic solvent based on guanidine salt and urea was prepared according to literature procedure1. A mixture of GuHCl (100 mmol) and urea (200 mmol) at 70 °C until homogenous liquid was formed. The resulting eutectic solvent was then allowed to cool at room temperature and was used for the synthesis of the desired product without further purification.

Typical procedure for synthesis of heterocycles: A mixture of aldehyde (1 mmol), 1,3-diketone (1 mmol) and hydantoin (1 mmol) in deep eutectic solvent (2 ml) was stirred on a magnetic stirrer at 80°C for nearly 30–38 min. The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was quenched by pouring it on crushed ice. The deep eutectic solvent remained in the water and the solid product was separated by filtration. The deep eutectic solvent was recovered from the filtrate by evaporation. The recovered deep eutectic solvent was reused.

Reference

- Spectral details
10-(1H-indol-3-yl)inden[2',1':4,5]pyrrolo[1,2-c]imidazole-1,3,9(2H)-trione (4aa): Yield: 95%, Musturd yellow solid, mp (149-151°C); 1H NMR (400MHz, CDCl$_3$): δ = 11.28 (bs, 1H, NH), 10.05 (s, 1H, NH), 6.99-8.01 (m, 8H, ArH), 8.32 (s, 1H, ArH). 13C NMR (100MHz, CDCl$_3$): δ = 94.59, 111.64, 113.70, 119.78, 120.63, 121.21, 121.65, 122.06, 124.49, 128.04, 128.85, 129.48, 130.02, 133.21, 136.73, 137.30, 140.05, 149.14, 167.50, 185.27. Anal. calculated for C$_{21}$H$_{11}$N$_3$O$_3$: C 71.39, H 3.14, N 11.89, O 13.58%; found: C 71.60, H 3.11, N 11.87, O 13.56 %.

10-(naphthalen-1-yl)inden[2',1':4,5]pyrrolo[1,2-c]imidazole-1,3,9(2H)-trione (4ab): Yield: 92%, Light brown liquid, 1H NMR (400MHz, CDCl$_3$): δ = 11.23 (bs, 1H, NH), 7.53-8.36 (m, 11H, ArH). 13C NMR (100MHz, CDCl$_3$): δ = 110.70, 115.42, 121.56, 123.48, 124.98, 125.25, 127.07, 127.76, 128.73, 129.19, 131.48, 132.18, 133.81, 134.56, 135.42, 135.58, 136.83, 140.06, 140.15, 149.29, 167.36, 186.30. Anal. calculated for C$_{23}$H$_{12}$N$_2$O$_3$: C 75.82, H 3.32, N 7.69, O 13.17%; found: C 75.80, H 3.31, N 7.67, O 13.16 %.

10-(pyridin-3-yl)inden[2',1':4,5]pyrrolo[1,2-c]imidazole-1,3,9(2H)-trione (4ac): Yield: 92%, Light brown solid, mp (110-112°C); 1H NMR (400MHz, CDCl$_3$): δ = 11.25 (bs, 1H, NH), 9.16-9.18 (d, 1H, ArH), 8.71-8.72 (m, 1H, ArH), 7.45-8.04 (m, 6H, ArH). 13C NMR (100MHz, CDCl$_3$): δ = 113.65, 121.27, 121.86, 123.70, 124.26, 129.16, 131.45, 133.63, 135.75, 135.86, 139.91, 140.30, 147.57, 148.25, 149.26, 167.31, 188.91. Anal. calculated for C$_{18}$H$_9$N$_3$O$_3$: C 68.57, H 2.88, N 13.33, O 15.22%; found: C 68.55, H 2.86, N 13.31, O 15.21 %.

10-(thiophen-3-yl)inden[2',1':4,5]pyrrolo[1,2-c]imidazole-1,3,9(2H)-trione (4ad): Yield: 94%, Dark green solid, mp (128-130°C); 1H NMR (400MHz, CDCl$_3$): δ = 11.26 (bs, 1H, NH), 7.77-8.05 (m, 6H, ArH), 7.22-7.25 (m, 1H, ArH). 13C NMR (100MHz, CDCl$_3$): δ = 113.58,
121.37, 121.97, 123.23, 124.83, 128.14, 128.45, 128.72, 130.52, 135.06, 135.29, 138.40, 140.48, 141.86, 149.17, 167.21, 186.59. Anal. calculated for C\textsubscript{17}H\textsubscript{8}N\textsubscript{2}O\textsubscript{3}S: C 63.74, H 2.52, N 8.75, O 14.98; found: C 63.73, H 2.51, N 8.71, O 14.97.

10-(3-bromo-4-hydroxy-5-methoxyphenyl)indenon[2',1':4,5]pyrrolo[1,2-c]imidazole-1,3,9(2H)-trione (4ae): Yield: 91%, Mahroon solid, mp (135-137\degree C); 1H NMR (400MHz, CDCl\textsubscript{3}): δ = 11.52 (bs, 1H, NH), 9.76 (bs, 1H, OH), 7.71-7.97 (m, 4H, ArH), 7.34 (s, 1H, ArH), 7.48 (s, 1H, ArH), 3.93 (s, 3H, CH\textsubscript{3}). 13C NMR (100MHz, CDCl\textsubscript{3}): δ = 56.70, 108.92, 114.49, 115.12, 121.97, 123.23, 126.17, 126.69, 128.15, 132.20, 134.37, 135.24, 137.96, 140.01, 140.68, 142.50, 150.20, 154.41, 167.24, 189.84. Anal. calculated for C\textsubscript{20}H\textsubscript{11}BrN\textsubscript{2}O\textsubscript{5}: C 54.69, H 2.52, N 6.38, O 18.21%; found: C 54.67, H 2.51, N 6.37, O 18.20 %.

9-(1H-indol-3-yl)-6,6-dimethyl-6,7-dihydro-1H-imidazo[1,5-a]indole-1,3,8(2H,5H)-trione (4ba): Yield: 94%, Yellow solid, (134-136\degree C); 1H NMR (400MHz, CDCl\textsubscript{3}): δ = 11.22 (bs, 1H, NH), 10.04 (s, 1H, NH), 8.75 (s, 1H, ArH), 7.31-7.99 (m, 4H, ArH), 2.92 (s, 2H, CH\textsubscript{2}), 2.60 (s, 2H, CH\textsubscript{2}), 1.11 (s, 6H, CH\textsubscript{3}). 13C NMR (100MHz, CDCl\textsubscript{3}): δ = 28.67, 35.49, 43.77, 54.00, 94.49, 111.70, 113.58, 118.85, 121.44, 121.83, 122.03, 128.26, 128.85, 129.99, 135.69, 136.29, 149.82, 167.58, 197.78. Anal. calculated for C\textsubscript{20}H\textsubscript{17}N\textsubscript{3}O\textsubscript{3}: C 69.15, H 4.93, N 12.10, O 13.82%; found: C 69.14, H 4.91, N 12.07, O 13.86 %.

6,6-dimethyl-9-(naphthalen-1-yl)-6,7-dihydro-1H-imidazo[1,5-a]indole-1,3,8(2H,5H)-trione (4bb): Yield: 91%, Light brown liquid, 1H NMR (400MHz, CDCl\textsubscript{3}) δ = 11.26 (bs, 1H, NH), 7.25-8.06 (m, 7H, ArH), 2.89 (s, 2H, CH\textsubscript{2}), 2.48 (s, 2H, CH\textsubscript{2}), 1.08 (s, 6H, CH\textsubscript{3}). 13C NMR (100MHz, CDCl\textsubscript{3}): δ = 28.74, 35.36, 43.26, 54.18, 113.55, 124.20, 125.73, 127.07, 127.50, 128.59, 129.18, 131.45, 134.27, 134.39, 136.85, 138.40, 149.04, 167.26, 193.72. Anal. calculated
for C$_{22}$H$_{18}$N$_2$O$_3$: C 73.73, H 5.06, N 7.82, O 13.39%; found: C 73.71, H 5.04, N 13.37, O 13.36%.

6,6-dimethyl-9-(pyridin-3-yl)-6,7-dihydro-1H-imidazo[1,5-a]indole-1,3,8(2H,5H)-trione (4bc): Yield 93%, Light brown, mp (112-115°C); 1H NMR (400MHz, CDCl$_3$): δ = 11.26 (s, 1H, NH), 8.97 (s, 1H, ArH), 7.66-8.54 (m, 3H, ArH), 2.88 (s, 2H, CH$_2$), 2.58 (s, 2H, CH$_2$), 1.09 (s, 6H, CH$_3$). Anal. calculated for C$_{17}$H$_{15}$N$_3$O$_3$: C 66.01, H 4.89, N 13.58, O 15.52%; found: C 66.00, H 4.88, N 13.57, O 15.50%.

6,6-dimethyl-9-(thiophen-3-yl)-6,7-dihydro-1H-imidazo[1,5-a]indole-1,3,8(2H,5H)-trione (4bd): Yield 95%, Violet solid, mp (129-131°C); 1H NMR (400MHz, CDCl$_3$): δ = 11.89 (s, 1H, NH), 7.12-7.37 (m, 3H, ArH), 2.90 (s, 2H, CH$_2$), 2.59 (s, 2H, CH$_2$), 1.12 (s, 6H, CH$_3$). 13C NMR (100MHz, CDCl$_3$): δ = 29.08, 32.15, 45.21, 52.60, 115.77, 123.88, 126.52, 127.74, 129.47, 130.42, 133.59, 136.69, 151.65, 166.92, 189.76. Anal. calculated for C$_{16}$H$_{14}$N$_2$O$_3$S: C 61.13, H 4.49, N 8.91, O 15.27, S 10.20%; found: C 61.11, H 4.47, N 8.89, O 15.24, S 10.18%.

9-(3-bromo-4-hydroxy-5-methoxyphenyl)-6,6-dimethyl-6,7-dihydro-1H-imidazo[1,5-a]indole-1,3,8(2H,5H)-trione (4be): Yield 91%, Off-white solid, mp (133-135°C); 1H NMR (400MHz, CDCl$_3$): δ = 11.58 (bs, 1H, NH), 9.76 (s, 1H, OH), 7.62 (s, 1H, ArH), 7.34 (s, 1H, ArH), 3.95 (s, 3H, CH$_3$), 2.92 (s, 2H, CH$_2$), 2.50 (s, 2H, CH$_2$), 1.13 (s, 6H, CH$_3$). 13C NMR (100MHz, CDCl$_3$): δ = 28.38, 35.46, 43.33, 54.34, 56.13, 109.15, 113.26, 115.34, 123.09, 126.62, 130.83, 135.30, 137.38, 141.11, 148.98, 154.23, 167.24, 196.19. Anal. calculated for C$_{19}$H$_{17}$BrN$_2$O$_5$: C 52.67, H 3.96, N 6.47, O 18.46%; found: C 52.66, H 3.94, N 6.45, O 18.44%.

7-(1H-indol-3-yl)-6H,8H-chromeno[3',4':4,5]pyrrolo[1,2-c]imidazole-6,8,10(9H)-trione (4ca): Yield 93%, Orange solid, mp (119-121°C); 1H NMR (400MHz, CDCl$_3$): δ = 11.22 (bs, 1H,
NH), 10.04 (s, 1H, NH), 7.78 (s, 1H, ArH), 7.18-8.30 (m, 8H, ArH). 13C NMR (100MHz, CDCl$_3$): δ = 94.40, 111.66, 118.48, 119.72, 121.28, 122.04, 123.09, 124.46, 126.50, 126.92, 128.56, 128.90, 129.67, 130.50, 131.00, 136.75, 139.20, 149.37, 158.35, 158.85, 167.22. Anal. calculated for C$_{21}$H$_{11}$N$_3$O$_4$: C 68.29, H 3.00, N 11.38, O 17.33%; found: C 68.27, H 2.99, N 11.36, O 17.31%.

7-(pyridin-3-yl)-6H,8H-chromeno[3',4':4,5]pyrrolo[1,2-c]imidazole-6,8,10(9H)-trione (4cc): Yield 92%, Greenish black solid, mp (129-131°C); 1H NMR (400MHz, CDCl$_3$): δ = 11.24 (bs, 1H, NH), 7.06-8.02 (m, 8H, ArH). 13C NMR (100MHz, CDCl$_3$): δ = 115.87, 120.26, 123.06, 123.65, 124.52, 124.93, 125.30, 126.65, 128.53, 129.23, 131.50, 133.44, 134.70, 140.69, 142.64, 152.75, 153.96, 167.66. Anal. calculated for C$_{18}$H$_9$N$_3$O$_4$: C 65.26, H 2.74, N 12.68, O 19.32%; found: C 65.24, H 2.73, N 12.66, O 19.30%.

7-(thiophen-3-yl)-6H,8H-chromeno[3',4':4,5]pyrrolo[1,2-c]imidazole-6,8,10(9H)-trione (4cd): Yield 91%, Rust brown solid, mp (122-123°C); 1H NMR (400MHz, CDCl$_3$): δ = 11.27 (s, 1H, NH), 7.08-8.04 (m, 7H, ArH). Anal. calculated for C$_{17}$H$_8$N$_2$O$_4$S: C 60.71, H 2.40, N 8.33, O 19.03, S 9.53%; found: C 60.69, H 2.37, N 8.31, O 19.01, S 9.51%.

7-(3-bromo-4-hydroxy-5-methoxyphenyl)-6H,8H-chromeno[3',4':4,5]pyrrolo[1,2-c]imidazole-6,8,10(9H)-trione (4ce): Yield 92%, Rust brown solid, mp (130-132°C); 1H NMR (400MHz, CDCl$_3$): δ = 11.53 (bs, 1H, NH), 9.77 (s, 1H, OH), 7.34-8.05 (m, 5H, ArH), 6.90 (s, 1H, ArH), 3.97 (s, 3H, CH$_3$), 13C NMR (100MHz, CDCl$_3$): δ = 56.87, 112.84, 113.83, 116.64, 122.95, 126.13, 126.64, 126.98, 127.51, 129.15, 129.98, 132.72, 137.46, 139.21, 141.33, 149.62, 151.74, 153.36, 156.22, 167.53. Anal. Calculated for C$_{20}$H$_{11}$BrN$_2$O$_6$: C 52.77, H 2.44, N 6.15, O 21.09%; found: C 52.76, H 2.42, N 6.12, O 21.08%.
5-(1H-indol-3-yl)-1,3-dimethyl-2H-imidazo[1',5':1,5]pyrrolo[2,3-d]pyrimidine-
2,4,6,8(1H,3H,7H)-tetraone (4da): Yield 95%, Orange solid, mp (120-122°C); 1H NMR (400MHz, CDCl$_3$): δ = 11.23 (bs, 1H, NH), 10.08 (bs, 1H, NH), 7.99 (s, 1H, ArH), 7.33-7.49 (m, 4H, ArH), 3.18 (s, 3H, CH$_3$), 3.02 (s, 3H, CH$_3$). 13C NMR (100MHz, CDCl$_3$): δ = 27.98, 30.35, 101.65, 113.62, 115.24, 120.25, 121.63, 121.86, 122.06, 129.12, 129.86, 130.36, 138.28, 143.61, 151.43, 153.74, 157.32, 167.82. Anal. calculated for C$_{18}$H$_{13}$N$_5$O$_4$: C 59.50, H 3.61, N 19.28, O 17.61%; found: C 59.49, H 3.59, N 19.25, O 17.59%.

1,3-dimethyl-5-(naphthalen-1-yl)-2H-imidazo[1',5':1,5]pyrrolo[2,3-d]pyrimidine-
2,4,6,8(1H,3H,7H)-tetraone (4db): Yield 92%, Yellow liquid; 1H NMR (400MHz, CDCl$_3$): 1H NMR (400MHz, CDCl$_3$):δ = 11.23 (s, 1H, NH), 7.50-8.06 (m, 7H, ArH), 3.43 (s, 3H, CH$_3$), 3.28 (s, 3H, CH$_3$). Anal. calculated for C$_{20}$H$_{14}$N$_4$O$_4$: C 64.17, H 3.77, N 14.97, O 17.09%; found: C64.16, H 3.76, N 14.95, O 17.07%.

1,3-dimethyl-5-(pyridin-3-yl)-2H-imidazo[1',5':1,5]pyrrolo[2,3-d]pyrimidine-
2,4,6,8(1H,3H,7H)-tetraone (4dc): Yield 93%, Mahroon solid, mp (130-132°C); 13C NMR (100MHz, DMSO-d$_6$): 27.49, 28.52, 113.68, 123.48, 124.35, 131.78, 136.02, 137.50, 143.85, 147.31, 148.20, 148.66, 151.89, 158.86, 166.80. Anal. calculated for C$_{15}$H$_{11}$N$_5$O$_4$: C 55.39, H 3.41, N 21.53, O 19.67%; found: C 55.36, H 3.40, N 21.51, O 19.65%.

1,3-dimethyl-5-(thiophen-3-yl)-2H-imidazo[1',5':1,5]pyrrolo[2,3-d]pyrimidine-
2,4,6,8(1H,3H,7H)-tetraone (4dd): Yield 94%, Brown solid, mp (119-121°C); 1H NMR (400MHz, CDCl$_3$):δ = 11.28 (s, 1H, NH), 7.27-8.00 (m, 3H, ArH), 3.41 (s, 3H, CH$_3$), 3.18 (s, 3H, CH$_3$). Anal. Calculated for C$_{14}$H$_{10}$N$_4$O$_4$S: C 50.91, H 3.05, N 16.96, O 19.37, S 9.71%; found: C 50.90, H 3.04, N 16.94, O 19.35, S 9.70%.
5-(3-bromo-4-hydroxy-5-methoxyphenyl)-1,3-dimethyl-2H-imidazo[1',5':1,5]pyrrolo[2,3-d]pyrimidine-2,4,6,8(1H,3H,7H)-tetraone (4de): Yield 92%, Yellowish green solid, mp (120-122°C); 1H NMR (400MHz, CDCl$_3$): δ = 11.55 (bs, 1H, NH), 9.73 (bs, 1H, OH), 7.68 (s, 1H, ArH), 7.37 (s, 1H, ArH), 3.87 (s, 3H, CH$_3$), 3.18 (s, 3H, CH$_3$), 3.03 (s, 3H, CH$_3$) 13C NMR (100MHz, CDCl$_3$): δ = 24.87, 29.14, 56.90, 109.71, 110.03, 116.13, 118.13, 125.09, 129.26, 129.42, 133.18, 138.40, 149.14, 150.29, 155.42, 158.85, 168.62. Anal. Calculated for C$_{17}$H$_{13}$BrN$_4$O$_6$: C 45.45, H 2.92, N 12.47, O 21.37%; found: C 45.43, H 2.90, N 12.44, O 21.36%.

- Copies of 1H and 13C NMR
1H spectra of (4aa)
13C spectra of (4aa)
1H spectra of (4ab)
13C spectra of (4ab)
1H spectra of (4ac)
13C spectra of (4ac)
1H spectra of (4ad)
13C spectra of (4ad)
13C spectra of (4ae)
1H spectra of (4ba)
13C spectra of (4ba)
13C spectra of (4bb)
1H spectra of (4bc)
1H spectra of (4bd)
13C spectra of (4be)
1H spectra of (4ca)
13C spectra of (4ca)
1H spectra of (4cb)
1H spectra of (4cc)
1H spectra of (4cd)
1H spectra of (4ce)
13C spectra of (4ce)
1H spectra of (4da)
13C spectra of (4da)
1H spectra of (4db)
13C spectra of (4dc)
1H spectra of (4dd)

![Chemical structure and NMR spectrum](image)
1H spectra of (4de)