Appendix. Supporting Information

New o-substituted diphenylphosphinic amides ligands: synthesis, characterization and complexation with Zn$^{2+}$, Cu$^{2+}$ and Y$^{3+}$

A. C. R. F. Medeiros,a,b M. M. Gouvêa,a,c T. V. Felipe,b F. F. C. Marques,a,c A. M. R. Bernardino,*a,b F. López-Ortiz*d and M. C. de Souza*a,b

aPrograma de Pós-Graduação em Química, Instituto de Química, Universidade Federal Fluminense, Niterói 24020-141, Brasil

bDepartamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Niterói 24020-141, Brasil

cDepartamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói 24020-141, Brasil

dÁrea de Química Orgânica, Universidad de Almería, Ctra. Sacramento s/n, 04120 Almería, Spain

*Corresponding Autor

Tel No.: +55 021 26292230 and +34 950015478

E-author for correspondence: marcoscs@id.uff.br
Contents

Structural characterization of compounds 1-13

1H-, 13C- and 31P-NMR, IR and HRMS (ESI) spectra of the new compounds.

Complexation data

1) 1H NMR spectra of 11b and 11b/ZnCl$_2$

2) IR spectra

3) Spectrofluorimetric spectra

4) Titration curves
Structural characterization of compounds 1-13

1

White solid. Yield: 80%. Empirical formula: C_{18}H_{24}NOP. MW: 301.36 g/mol. Mp: 115 °C. 1H-NMR (499.84 MHz, CDCl$_3$, ppm): δ 1.15 (d, 12 H, 3J$_{HH} = 6.8$ Hz, H-1) 3.39 (dhep, 2H, 3J$_{HH} = 6.7$ Hz and 3J$_{PH} = 5.9$ Hz, H-2), 7.32-7.44 (m, 6H, H-5, H-6), 7.73-7.81 (m, 4 H, H-4). 31P-NMR (202.34 MHz, CDCl$_3$, ppm): δ 30.44. IR: 2970 cm$^{-1}$ (νC-H), 1435 (νP-Ph), 1173 (νP=O), 1021 (νP N-C).

2

White solid. Yield: 88%. Empirical formula: C$_{19}$H$_{24}$NO$_2$P. MW: 329.37 g/mol. Mp = 116-117 °C. 1H-NMR (299.95 MHz, CDCl$_3$, ppm): δ 1.31 and 1.22 (2d, 12H, 3J$_{HH} = 6.0$ Hz, H-1), 3.48 (dhep, 2H, 3J$_{HH} = 6.5$ Hz and 3J$_{PH} = 7.5$ Hz, H-2), 7.54 to 7.44 (m, 3H), 7.70 to 7.58 (m, 3H), 7.76-7.72 (m, 2H, H-4), 8.11 to 8.09 (m, 1H, H-8), 10.95 (s, 1H,
H-13). 31P-NMR (202.34 MHz, CDCl$_3$, ppm): δ 32.49. IR: 2970 cm$^{-1}$ (vC-H), 1689 (vC=O), 1404 (vP-Ph), 1190 (vP=O), 984 (vP N-C).

Yellow solid. Yield: 65%. Empirical formula: C$_{20}$H$_{24}$NO$_3$P. MW: 357.38 g/mol. Mp = 123 °C. 1H-NMR (299.95 MHz, CDCl$_3$, ppm): δ 1.24 (12H, H-1), 3.45 (2H, H-2), 7.64 to 7.37 (m, 6H, H-5, H-6, H-7), 8.10-8.05 (m, 2H, H-4), 10.94 (s, 2H, H-9). 13C-NMR (75.43 MHz, CDCl$_3$, ppm): δ 23.67 and 23.45 (C-1), 48.28 (C-2), 129.12 (C-4), 132.48 (C-5), 132.72 (C-6), 132.89 (C-7), 136.95 (d, $^1J_{PC} = 116.9$ Hz, C-3), 139.84 (C-8), 192.49 (C-9). 31P-NMR (121.42 MHz, CDCl$_3$, ppm): δ 34.94. IR: 2969 (vC-H), 1688 (vC=O), 1398 (vP-Ph), 1190 (vP=O), 976 (vP-N-C). HRMS (ESI) m/z, calc. for C$_{20}$H$_{24}$NO$_3$P: 358.1572 [M+H]$^+$; found: 358.1561.

White solid. Yield: 65%. Empirical Formula: C$_{12}$H$_{11}$ClN$_2$O$_2$. MW: 250.68 g/mol. Mp = 291 °C. 1H-NMR (500 MHz, DMSO-d_6, ppm): δ 1.36 (t, 3H, $^3J_{HH} = 7.1$ Hz, CH$_3$), 4.35
\(q, 2H, ^3J_{HH} = 7.1 \text{ Hz, CH}_2 \), 7.48 (t, 1H, \(^3J_{HH} = 7.1 \text{ Hz, H-6}\)), 7.91 (d, 1H, \(^3J_{HH} = 6.5 \text{ Hz, H-7}\)), 8.36 (d, 1H, \(^3J_{HH} = 8.4 \text{ Hz, H-5}\)), 8.42 (s, 2H, NH\(_2\)), 8.98 (s, 1H, H-2). \(^{13}\)C-NMR (125.69 MHz, DMSO-\(d_6\), ppm): \(\delta 14.61 \) (CH\(_3\)), 61.09 (CH\(_2\)), 100.89 (C-3), 120.12 (C-4a), 122.77 (C-5), 125.84 (C-6), 132.22 (C-7), 132.98 (C-4), 145.16 (C-8), 152.30 (C-2), 154.73 (C-8a), 167.74 (C=O). IR: 3374 (\(\nu\)N-H), 3159 (\(\nu\)C-H), 1687 (\(\nu\)C=O), 753 (\(\nu\)C-Cl).

5b

White solid. Yield: 62%. Empirical Formula: C\(_{12}\)H\(_{11}\)BrN\(_2\)O\(_2\). MW: 295.13 g/mol. Mp = 265 °C. \(^1\)H-NMR (500 MHz, DMSO-\(d_6\), ppm): \(\delta 1.36 \) (t, 3H, \(^3J_{HH} = 7.1 \text{ Hz, CH}_3\)), 4.36 (q, 2H, \(^3J_{HH} = 7.1 \text{ Hz, CH}_2\)), 7.41 (t, 1H, \(^3J_{HH} = 7.1 \text{ Hz, H-6}\)), 8.10 (d, 1H, \(^3J_{HH} = 10.0 \text{ Hz, H-7}\)), 8.37 (s, 2H, NH\(_2\)), 8.39 (m, 1H, H-5), 8.98 (s, 1H, H-2). \(^{13}\)C-NMR (125.69 MHz, DMSO-\(d_6\), ppm): \(\delta 14.46 \) (CH\(_3\)), 62.34 (CH\(_2\)), 101.13 (C-3), 101.37 (C-4), 119.23 (C-8), 125.08 (C-5), 128.05 (C-6), 138.16 (C-7), 148.24 (C-2), 165.83 (C=O). IR: 3368 (\(\nu\)N-H), 3139 (\(\nu\)C-H), 1688 (\(\nu\)C=O), 558 (\(\nu\)C-Br).
White solid. Yield: 70%. Empirical Formula: C_{12}H_{11}FN_{2}O_{2}. MW: 234.23 g/mol. Mp = 289 °C. ^1H-NMR (300 MHz, DMSO-d$_6$, ppm): δ 1.28 (t, 3H, $^3J_{HH} = 7.1$ Hz, CH$_3$), 4.22 (q, 2H, $^3J_{HH} = 7.1$ Hz, CH$_2$), 7.25 (1H, H-6), 7.37 (1H, H-7), 8.22 (m, 1H, H-5), 8.55 (s, 1H, H-2). ^13C-NMR (75.43 MHz, DMSO-d$_6$, ppm): δ 14.11 (CH$_3$), 59.47 (CH$_2$), 104.04 (C-6), 110.33 (C-4), 113.00 (C-7), 124.10 (C-8), 128.81 (C-5), 140.38 (C-8a), 145.19 (C-2), 162.27 (C-4a), 164.44 (C-3), 165.58 (C=O). IR: 3106 (vN-H), 2988 (vC-H), 1692 (vC=O), 1194 (vC-F).

White solid. Yield: 62%. Empirical formula: C$_{31}$H$_{35}$ClN$_3$O$_3$P. MW: 564.05 g/mol. Mp = 211 °C. ^1H-NMR (499.84 MHz, CDCl$_3$, ppm): δ 1.15 and 1.22 (12H, H-22), 1.36 (t, 3H, $^3J_{HH} = 7.1$ Hz, OCH$_2$CH$_3$), 3.45 (2H, H-21), 4.35 (q, 2H, $^3J_{HH} = 7.1$ Hz, OCH$_2$), 4.45 (d, 1H, $^2J_{HH} = 9.9$ Hz, H-10), 4.71 (d, 1H, $^2J_{HH} = 9.9$ Hz, H-10'), 6.05 (s, 1H, H-9), 7.23-7.27 (m, 1H, H-6), 7.31-7.46 (m, 7H), 7.66-7.78 (m, 4H), 9.17 (s, 1H, H-2). ^13C-NMR (125.69 MHz, CDCl$_3$, ppm): δ 14.61 (s, OCH$_3$CH$_3$), 23.41-23.43 (C-22), 47.63 (d, $^2J_{PC}$
= 5.0 Hz, C-21), 60.80 (OCH₂CH₃), 64.69 (d, 3J_PC = 5.0 Hz, C-10), 101.68 (C-3), 119.44 (C-4a), 119.84 (C-5), 125.06 (C-6), 126.96 (d, 3J_PC = 12.5 Hz, C-19 or C-14), 128.24 (d, 3J_PC = 12.5 Hz, C-19 or C-14), 131.46 (C-13), 131.63 (C-18 or C-16), 133.46, 133.47 (C-17 or C-16), 134.50, 152.43 (C-2), 153.74 (C-8), 167.99 (C=O). 31P-NMR (202.34 MHz, CDCl₃, ppm): δ 35.77. IR: 3378 (vNH), 3165 (vCH), 1687 (vC=O), 1626 (vC=N), 1495 (vP-Ph), 1254 (vC-O), 1167 (vP=O), 781 (vC-Cl).

6b

White solid. Yield: 59%. Empirical formula: C₃₃H₳₃BrN₳O₳P. MW: 608.51 g/mol. Mp = 249 °C. 1H-NMR (499.84 MHz, DMSO-d₆, ppm): δ 1.12 and 1.22 (12H, H-22), 1.36 (t, 3H, 3J_HH = 7.1 Hz, OCH₂CH₃), 3.45 (2H, H-21), 4.36 (q, 2H, 3J_HH = 7.1 Hz, OCH₂), 4.61 (d, 1H, 3J_HH = 9.9 Hz, H-10), 4.63 (d, 1H, 3J_HH = 9.9 Hz, H-10'), 5.52 (1H, H-9), 7.40-7.66 (m, 9H), 8.10 (H-7 or H-5), 8.11 (H-7 or H-5), 8.40 to 8.43 (m, 2H), 8.98 (s, 1H, H-2). 13C-NMR (125.69 MHz, DMSO-d₆, ppm): δ 14.32 (OCH₂CH₃), 23.09 and 23.14 (C-22), 46.97 (C-21), 60.67 (OCH₂CH₃), 61.95 (d, 3J_PC = 5.0 Hz, C-10), 100.57 (C-3), 119.82 (C-4a), 123.30 (C-5), 124.53 (C-4), 125.96 (C-6), 126.58 (d, 2J_PC = 12.5 Hz, C-18), 128.56 (d, 2J_PC = 11.3 Hz, C-15), 128.85 (C-12), 130.92 (C-11), 131.62 (C-19 or C-14), 131.79 (C-19 or C-14), 132.03 (C-18 or C-15), 132.66 (C-18 or C-15), 134.91 (d, 1J_PC = 120.6 Hz, C-17 or C-16), 135.32 (C-7), 146.27 (d, 1J_PC = 118.1 Hz, C-
17 or C-16), 152.19 (C-2), 154.43 (C-8), 167.41 (C=O). 31P-NMR (202.34 MHz, DMSO-$_d_6$, ppm): δ 34.18. IR: 3370 (νNH), 2961 (νCH), 1687 (νC=O), 1628 (νC=N), 1442 (νP-Ph), 1258 (νC-O), 1175 (νP=O), 980 (νP-N-C), 760 (νC-Br).

White solid. Yield: 69%. Empirical formula: C$_{31}$H$_{35}$FN$_3$O$_3$P. MW: 547.60 g/mol. Mp = 228 °C. 1H-NMR (499.84 MHz, DMSO-$_d_6$, ppm): δ 1.16 and 1.22 (12H, 3J$_{HH}$ = 4.9 Hz, H-22), 1.55 (m, 3H, OCH$_2$CH$_3$) 3.44 (2H, 3J$_{HH}$ = 4.9 Hz and 3J$_{PH}$ = 9.9 Hz, H-21), 4.05 (q, 2H, 3J$_{HH}$ = 7.1 Hz, OCH$_2$), 4.45 (d, 1H, 2J$_{HH}$ = 9.9 Hz, H-10), 4.71 (d, 1H, 2J$_{HH}$ = 9.9 Hz, H-10$'$), 6.05 (1H, H-9), 6.72 (H-5), 7.02 (m, 1H, H-7), 7.23-7.27 (m, 1H, H-6), 7.33-7.46 (m, 6H), 7.55 (m, 1H), 7.66-7.70 (m, 2H), 8.29 (s, 1H, H-2). 13C-NMR (125.69 MHz, DMSO-$_d_6$, ppm): δ 14.47 (OCH$_2$CH$_3$), 23.18 and 23.21 (C-22), 47.08 (C-21), 60.12 (OCH$_2$CH$_3$), 62.01 (d, 3J$_{PC}$ = 3.8 Hz, C-10), 126.68 (d, 2J$_{PC}$ = 12.6 Hz, C-18), 128.65 (d, 2J$_{PC}$ = 12.6 Hz, C-15), 128.93 (d, 3J$_{PC}$ = 11.3 Hz, C-12), 130.94 (C-11), 131.72 (C-19 or C-14), 131.90 (C-19 or C-14), 132.14 (C-6), 132.77 (d, 2J$_{FC}$ = 11.3 Hz, C-7), 134.91 (d, 1J$_{PC}$ = 122.2 Hz, C-17 or C-16), 146,73 (C-8), 162.02 (C=O). 31P-NMR (202.34 MHz, DMSO-$_d_6$, ppm): δ 34.20. IR: 3380 (vNH), 2960 (vCH), 1683 (vC=O), 1627 (vC=N), 1435 (vP-Ph), 1180 (vP=O), 980 (vP-N-C), 1181 (vCF).
Yellow oil. Yield: 71%. Empirical formula: C_{25}H_{32}N_3OP. MW: 421.51 g/mol. \(^1\)H-NMR (499.84 MHz, CDCl\(_3\), ppm): \(\delta\) 1.15 and 1.22 (H-21), 3.44 (2H, H-20), 3.78-4.07 (m, 2H, H-7), 4.45 (d, 1H, \(^2\)J\(_{HH}\) = 9.9 Hz, H-9), 4.71 (d, 1H, \(^2\)J\(_{HH}\) = 9.9 Hz, H-9'), 5.73 (1H, H-8), 7.23-7.27 (m, 1H, H-4), 7.33-7.46 (m, 6H), 7.48-7.64 (m, 1H), 7.64-7.70 (m, 2H, H-17), 7.74-7.86 (m, 1H), 8.01-8.04 (m, 1H, H-6). \(^{31}\)P-NMR (202.34 MHz, CDCl\(_3\), ppm): \(\delta\) 33.69. IR: 3298 (\(\nu\)N-H), 2968 (\(\nu\)C-H), 1591 (\(\nu\)C=N), 1435 (\(\nu\)P -Ph), 1176 (\(\nu\)P=O), 978 (\(\nu\)P-N-C).

Yellow oil. Yield: 69%. Empirical formula: C_{26}H_{34}N_3OP. MW: 435.54 g/mol. \(^1\)H-NMR (499.84 MHz, CDCl\(_3\), ppm): \(\delta\) 1.10 and 1.22 (2d, 12H, H-22), 2.82-2.92 (m, 4H, H-7, H-8), 3.38 (2H, H-21), 3.79 (d, 1H, \(^2\)J\(_{HH}\) = 14.9 Hz, H-10), 4.03 (d, 1H, \(^2\)J\(_{HH}\) = 14.9 Hz, H-10'), 7.00 (1H, H-5), 7.08 (d, 1H, \(^3\)J\(_{HH}\) = 9.9 Hz, H-3), 7.19-7.22 (m, 1H, H-4), 7.50-7.31 (m, 6H), 7.62 (d, 2H, \(^3\)J\(_{HH}\) = 9.9 Hz, H-18), 8.41 (d, 1H, \(^3\)J\(_{HH}\) = 9.9 Hz, H-6). \(^{31}\)P-
NMR (202.34 MHz, CDCl\textsubscript{3}, ppm): δ 34.20. IR: 3298 (vN-H), 2968 (vC-H), 1591 (vC=N), 1435 (vP-Ph), 1176 (vP=O), 978 (vP-N-C).

11a

Yellow oil. Yield: 68%. Empirical formula: C\textsubscript{27}H\textsubscript{45}N\textsubscript{3}O\textsubscript{4}P\textsubscript{2} MW: 537.61 g/mol. 1H-NMR (299.95 MHz, CDCl\textsubscript{3}, ppm): δ 1.21-1.31 (m, 24H, H-1, H-19), 2.51 (1H, H-14), 2.64 (m, 2H, H-15), 2.89-3.03 (m, 2H, H-16), 3.46 (dhep, 2H, 3J_{HH} = 5.9 Hz, 3J_{PH} = 8.9 Hz, H-2), 3.70 (d, 1H, 3J_{HH} = 11.9 Hz, H-13b), 3.91 (d, 1H, 3J_{HH} = 11.9 Hz, H-13a), 4.48-4.62 (m, 2H, H-18), 6.12 (1H, H-17), 7.36-7.53 (m, 7H, H-5, H-6, H-9, H-10, H-11), 7.63-7.77 (m, 3H, H-4, H-12). 31P-NMR (121.42 MHz, CDCl\textsubscript{3}, ppm): δ 8.83 (Pb), 34.29 (Pa). IR: 3361 and 3254 (vN-H), 2978 (vC-H), 1214 (vP=O phosphoramidate), 1178 (vP=O phosphinic amide) 979 (vP-O).
Yellow oil. Yield: 65%. Empirical formula: C$_{29}$H$_{49}$N$_3$O$_4$P$_2$ MW: 565.66 g/mol. 1H-NMR (499.84 MHz, CDCl$_3$, ppm): δ 1.15-1.25 (m, 24H, H-1, H-21), 1.44 (m, 4H, H-16, H-17), 2.48 (m, 2H, H-15), 2.79 (m, 2H, H-18), 3.17 (1H, H-14), 3.41 (2H, H-2), 3.68 (d, 1H, 2J$_{HH}$ = 14.9 Hz, H-13b), 4.02 (d, 1H, 2J$_{HH}$ = 14.9 Hz, H-13a), 4.43-4.54 (m, 2H, H-20), 7.33-7.47 (m, 7H, H-5, H-6, H-9, H-10, H-11, H-12), 7.61-7.69 (m, 2H, H-4). 13C-NMR (125.69 MHz, CDCl$_3$, ppm): δ 23.23 (d, 3J$_{PC}$ = 8.8 Hz, C-1), 23.64 (d, 3J$_{PC}$ = 8.8 Hz, C-2), 26.40 (C-16), 29.13 (d, 3J$_{PC}$ = 11.3 Hz, C-17), 41.05 (C-18), 47.28 (d, 2J$_{PC}$ = 7.5 Hz, C-2) 48.17 (C-15), 52.15 (d, 3J$_{PC}$ = 6.3 Hz, C-13), 70.27 (d, 2J$_{PC}$ = 8.8 Hz, C-20), 126.51, 128.05 (C-5), 131.69, 131.99 (C-4), 132.88 (C-9), 133.67 (d, 1J$_{PC}$ = 109.3 Hz, C-3), 135.31 (d, 1J$_{PC}$ = 101.8 Hz, C-7). 31P-NMR (202.34 MHz, CDCl$_3$, ppm): δ 8.11 (Pb), 34.46 (Pa). IR: 3340 and 3227 (νN-H), 2976 (νC-H), 1228 (νP=O phosphoramidate), 1176 (νP=O phosphinic amide) 976 (νP-O). HRMS (ESI) m/z, calc. for C$_{29}$H$_{49}$N$_3$O$_4$P$_2$: 566.3263 [M+H]$^+$; found: 566.3276.
Yellow oil. Yield: 68%. Empirical formula: C\textsubscript{30}H\textsubscript{51}N\textsubscript{3}O\textsubscript{4}P\textsubscript{2} MW: 579.69 g/mol. 1H NMR (499.84 MHz, CDCl\textsubscript{3}, ppm): \(\delta\) 0.82 (m, 2H, H-17), 1.11-1.25 (m, 24H, H-1, H-22), 1.34-1.48 (m, 4H, H-16, H-18), 2.47 (H-15), 2.75-2.84 (m, 2H, H-19), 3.35-3.45 (m, 3H, H-2, H-14), 3.70 (d, 1H, \(^2\text{J}_{\text{HH}} = 14.9\) Hz, H-13b), 4.04 (d, 1H, \(^2\text{J}_{\text{HH}} = 14.9\) Hz, H-13a), 4.45-4.54 (m, 2H, H-21), 7.36-7.47 (m, 7H, H-5 H-6, H-9, H-10, H-11, H-12), 7.60-7.65 (m, 2H, H-4). 13C-NMR (125.69 MHz, CDCl\textsubscript{3}, ppm): \(\delta\) 23.25 (C-1), 23.67 (C-22), 24.09 (C-17), 28.75 (C-16), 31.24 (C-18), 41.20 (C-19), 47.34 (C-2), 48.50 (C-15), 52.23 (d, \(^3\text{J}_{\text{PC}} = 5.0\) Hz, C-13), 70.36 (d, \(^2\text{J}_{\text{PC}} = 6.3\) Hz, C-21), 126.63, 128.10 (C-5), 131.36, 131.73 (C-4), 132.92 (C-9), 132.55 (d, \(^1\text{J}_{\text{PC}} = 123.2\) Hz, C-3), 134.72 (d, \(^1\text{J}_{\text{PC}} = 121.9\) Hz, C-7), 134.88 (C-8). 31P-NMR (202.34 MHz, CDCl\textsubscript{3}, ppm): \(\delta\) 7.66 (Pb) and 34.82 (Pa). IR: 3371 and 3203 (\(\nu\text{N-H}\)), 2927 (\(\nu\text{C-H}\)), 1205 (\(\nu\text{P=O phosphoramidate}\)), 1177 (\(\nu\text{P=O phosphinic amide}\)) 978 (\(\nu\text{P-O}\)). HRMS (ESI) \(m/z\), calc. for C\textsubscript{30}H\textsubscript{51}N\textsubscript{3}O\textsubscript{4}P\textsubscript{2}: 580.3433 [M+H]+; found: 580.3428.
Yellow oil. Yield: 69%. Empirical formula: C_{31}H_{53}N_{3}O_{4}P_{2} MW: 593.72 g/mol. \(^1\)H-NMR (299.95 MHz, CDCl\(_3\), ppm): \(\delta 1.11-1.13\) (m, 4H, H-17, H-18), \(1.23-1.25\) (m, 24H, H-1, H-23), \(1.33-1.43\) (m, 4H, H-16, H-19), \(2.32-2.44\) (m, 3H, H-14, H-15), \(2.76-2.84\) (m, 2H, H-20), \(3.33-3.48\) (m, 2H, H-2), \(3.69\) (d, 1H, \(^2\)J\(_{HH}\) = 11.9 Hz, H-13b), \(4.03\) (d, 1H, \(^2\)J\(_{HH}\) = 11.9 Hz, H-13a), \(4.46-4.57\) (m, 2H, H-22), \(7.34-7.49\) (m, 7H, H-5, H-6, H-9, H-10, H 11, H-12), \(7.61-7.68\) (m, 2H, H-4). \(^{13}\)C-NMR (75.43 MHz, CDCl\(_3\), ppm): \(\delta 23.13\) (C-1), \(23.57\) (C-23), \(26.17\) (C-18), \(26.58\) (C-17), \(28.88\) (C-16), \(31.27\) (\(^3\)J\(_{PC}\) = 6.8 Hz, C-19), \(41.13\) (C-20), \(47.22\) (C-2), \(48.38\) (C-15), \(51.99\) (d, \(^3\)J\(_{PC}\) = 3.8 Hz, C-13), \(70.25\) (d, \(^2\)J\(_{PC}\) = 6.0 Hz, C-22), \(126.54\), \(127.99\) (C-5), \(131.26\), \(131.60\) (C-4), \(132.50\) (C-9), \(132.83\), \(134.70\) (d, \(^1\)J\(_{PC}\) = 121.4 Hz, C-3), \(132.21\) (d, \(^1\)J\(_{PC}\) = 123.7 Hz, C-7), \(142.54\) (C-8). \(^{31}\)P-NMR (121.42 MHz, CDCl\(_3\), ppm): \(\delta 7.66\) (Pb), \(34.87\) (Pa). IR: 3405 and 3251 (vN-H), 2931 (vC-H), 1205 (vP=O phosphoramidate), 1176 (vP=O phosphinic amide) 976 (vP-O). HRMS (ESI) \(m/z\), calc. for C_{31}H_{53}N_{3}O_{4}P_{2}: 594.3589 [M+H]^+; found: 594.3584.
Yellow oil. Yield: 68%. Empirical formula: C_{36}H_{66}N_{5}O_{7}P_{3} MW: 773.85 g/mol. \(^1H\)-NMR (299.95 MHz, CDCl\(_3\), ppm): \(\delta\) 0.84 (m, 4H, H-12), 1.12-1.22 (m, 36H, H-1, H-15), 1.49-1.98 (m, 4H, H-11), 2.73-2.79 (2H, H-10), 3.42-3.51 (m, 2H, H-9/9'), 3.64 (1H, H-9), 3.92 (1H, H-9'), 4.38 (dhep, 4H, \(^3J_{HH}= 5.9\), \(^3J_{PH}= 8.9\) Hz, H-14), 4.70-4.79 (2H, H-13), 7.51-7.80 (m, 8H, H-4, H-5, H-6, H-7). \(^13C\)-NMR (75.43 MHz, CDCl\(_3\), ppm): \(\delta\) 23.69 (C-15), 29.36 (C-1), 39.33 (C-11), 42.59 (d, \(^3J_{PC}= 5.3\) Hz, C-9), 47.73 (d, \(^2J_{PC}= 5.3\) Hz, C-12), 70.76 (d, \(^2J_{PC}= 5.3\) Hz, C-14), 70.43 (C-2), 127.21-133.54 (C-3, C-4, C-5, C-6, C-7, C-8). \(^{31}P\)-NMR (121.42 MHz, CDCl\(_3\), ppm): \(\delta\) 8.62 (2P, Pb), 28.90 (1P, Pa). IR: 3386 and 3233 (\(\nu\)N-H), 2976 (\(\nu\)C-H), 1205 (\(\nu\)P=O phosphoramidate), 1177 (\(\nu\)P=O phosphinic amide) 979 (\(\nu\)P-O).

13b

Yellow oil. Yield: 58%. Empirical formula: C_{40}H_{74}N_{5}O_{7}P_{3} MW: 829.96 g/mol. \(^1H\)-NMR (299.95 MHz, CDCl\(_3\), ppm): \(\delta\) 1.14-1.27 (m, 36H, H-1, H-17), 1.41-1.49 (m, 4H, H-13), 2.43-2.57 (m, 4H, H-12), 2.72-2.87 (m, 4H, H-14), 3.13-3.22 (2H, H-10), 3.39
(dhep, 2H, 3JHH = 5.9 Hz, 3JPH = 8.9 Hz, H-2), 3.70 (d, 2H, 2JHH = 14.9 Hz, H-9/9’), 4.09 (d, 2H, 2JHH = 14.9 Hz, H-9/9’), 4.49 (4H, H-16), 7.19-7.20 (m, 2H, H-6), 7.23 (m, 4H, H-4, H-5), 7.73-7.80 (m, 1H, H-7). 13C-NMR (75.43 MHz, CDCl3, ppm): δ 22.82 and 22.88 (C-17), 25.64 (C-12), 28.38 (C-1), 40.21 (C-13), 46.07 (d, 3JPC = 4.5 Hz, C-9), 46.67 (d, 2JPC = 5.3 Hz, C-14), 47.23 (C-11), 69.39 (d, 2JPC = 5.3 Hz, C-2), 69.64 (d, 2JPC = 5.3 Hz, C-16), 125.62-132.90 (C-3, C-4, C-5, C-6, C-7, C-8). 31P-NMR (121.42 MHz, CDCl3, ppm): δ 8.23 (2P, Pb), 38.84 (1P, Pa). IR: 3409 and 3265 (νN-H), 2918 (νC-H), 1229 (νP=O phosphoramidate), 1179 (νP=O phosphinic amide), 979 (νP-O). HRMS (ESI) m/z, calc. for C40H74N5O7P3: 830.4879 [M+H]+; found: 830.4883.

Yellow oil. Yield: 62%. Empirical formula: C42H78N5O7P3 MW: 858.01 g/mol. 1H-NMR (499.84 MHz, CDCl3, ppm): δ 1.12-1.26 (m, 36H, H-1, H-18), 1.30-1.61 (m, 12H, H-12, H-13, H-14), 2.41-2.55 (m, 4H, H-11), 2.74-2.84 (m, 4H, H-15), 3.35-3.43 (m, 2H, H-2), 3.72 (d, 2H, 3JHH = 14.9 Hz, H-9/9’), 4.10 (d, 2H, 2JHH = 14.9 Hz, H-9/9’), 4.43-4.56 (m, 4H, H-17), 7.20 (m, 2H, H-6), 7.34-7.76 (m, 6H, H-4, H-5, H-7). 13C-NMR (125.69 MHz, CDCl3, ppm): δ 15.08 (C-13), 23.66 and 23.67 (C-18), 24.17 (C-13), 28.91 (C-12), 31.18 (d, 3JPC = 6.3 Hz, C-14), 41.15 (d, 3JPC = 1.3 Hz, C-9), 47.54 (C-11), 48.50 (C-15), 70.26 (d, 2JPC = 5.0 Hz, C-2), 70.41 (d, 2JPC = 5.0 Hz, C-17), 126.60-133.33 (C-3, C-4, C-5, C-6, C-7, C-8). 31P-NMR (202.34 MHz, CDCl3, ppm): δ 8.15 (2P, Pb), 38.62 (1P, Pa). IR: 3420 and 3251 (νN-H), 2930 (νC-H), 1205 (νP=O).
phosphoramide), 1177 (vP=O phosphinic amide), 978 (vP-O). HRMS (ESI) m/z, calc.
for \(\text{C}_{42}\text{H}_{78}\text{N}_{5}\text{O}_{7}\text{P}_{3} \): 858.5192 \([\text{M}+\text{H}]^+\); found: 858.5159.

13d

Yellow. Yield: 69%. Empirical formula: \(\text{C}_{44}\text{H}_{82}\text{N}_{5}\text{O}_{7}\text{P}_{3} \) MW: 886.07 g/mol. \(^1\text{H}-\text{NMR} \)
(299.95 MHz, CDCl\(_3\), ppm): \(\delta \) 0.91-1.12 (m, 4H, H-14), 1.14-1.27 (m, 36H, H-1, H-19),
1.28-1.61 (m, 8H, H-1, 13), 2.51 (m, 4H, H-15 or H-16), 2.72-2.85 (m, 4H, H-11),
3.32-3.46 (m, 2H, H-2), 3.73 (d, 2H, \(^2J_{\text{HH}} = 11.9 \) Hz, H-9/9’), 4.10 (d, 2H, \(^2J_{\text{HH}} = 11.9 \)
Hz, H-9,9’), 4.45-4.57 (m, 4H, H-18), 7.19 (m, 2H, H-6), 7.24-7.77 (m, 6H, H-4, H-5,
H-7). \(^{13}\text{C}-\text{NMR} \) (75.43 MHz, CDCl\(_3\), ppm): \(\delta \) 23.45-23.68 (C-19), 26.17 (C-14), 26.79
(C-13), 31.48 (d, \(^3J_{\text{PC}} = 6.8 \) Hz, C-15), 41.23 (C-12), 47.55 (C-11), 48.67 (C-16), 51.97
(d, \(^3J_{\text{PC}} = 4.5 \) Hz, C-9), 70.33 (d, \(^2J_{\text{PC}} = 5.3 \) Hz, C-2), 70.41 (d, \(^2J_{\text{PC}} = 6.0 \) Hz, C-18),
126.66-133.59 (C-3, C-4, C-5, C-6, C-7, C-8). \(^{31}\text{P}-\text{NMR} \) (121.42 MHz, CDCl\(_3\), ppm): \(\delta \)
4.75 (2P, Pb), 5.76 (1P, Pa). IR: 3409 and 3244 (vN-H), 2928 (vC-H), 1205 (vP=O
phosphoramide), 1182 (vP=O phosphinic amide), 979 (vP-O). HRMS (ESI) m/z, calc.
for \(\text{C}_{44}\text{H}_{82}\text{N}_{5}\text{O}_{7}\text{P}_{3} \): 886.5505 \([\text{M}+\text{H}]^+\); found: 886.5535.
1H NMR, 13C NMR, 31P NMR, IR and HRMS (ESI) spectra

IR spectrum of 1

1H NMR spectrum of 2
^{31}P NMR spectrum of \(2\)

IR spectrum of \(2\)
\(^1\)H NMR spectrum of 3

APT \(^{13}\)C NMR spectrum of 3

31P NMR spectrum of 3

[Image of a 31P NMR spectrum]

IR spectrum of 3

[Image of an IR spectrum]
HRMS (ESI) spectrum of 3

\[\text{HRMS (ESI) spectrum of 3} \]

\[\text{1H NMR spectrum of 5a} \]
APT 13C NMR spectrum of 5a

IR spectrum of 5a
1H NMR spectrum of 5b

APT 13C NMR spectrum of 5b
IR spectrum of 5b

1H NMR spectrum of 5c
APT 13C NMR spectrum of 5c

IR spectrum of 5c
1H NMR spectrum of 6a

APT 13C NMR spectrum of 6a
3P NMR spectrum of 6a

1H NMR spectrum of 6b
APT 13C NMR spectrum of 6b

31P NMR spectrum of 6b
1H NMR spectrum of 6c

APT 13C NMR spectrum of 6c
31P NMR spectrum of 6c

1H NMR spectrum of 8a
31P NMR spectrum of 8a

1H NMR spectrum of 8b
\(^{31}\)P NMR spectrum of 8b

\(^{1}\)H NMR spectrum of 11a
31P NMR spectrum of 11a

1H NMR spectrum of 11b
\(^{31}\)P NMR spectrum of \(11b\)

APT \(^{13}\)C NMR spectrum of \(11b\)
HRMS (ESI) spectrum of 11b

1H NMR spectrum of 11c
APT 13C NMR spectrum of 11c

31P NMR spectrum of 11c
HRMS (ESI) spectrum of 11c
1H NMR spectrum of 11d

APT 13C NMR spectrum of 11d
31P NMR spectrum of 11d

HRMS (ESI) spectrum of 11d
1H NMR spectrum of 13a

13C NMR spectrum of 13a
31P NMR spectrum of 13a

1H NMR spectrum of 13b
13C NMR spectrum of 13b

31P NMR spectrum of 13b
HRMS (ESI) spectrum of 13b
1H NMR spectrum of 13c

13C NMR spectrum of 13c
31P NMR spectrum of 13c
HRMS (ESI) spectrum of 13c

m8cm62
03-17-07 (0.030) C42H79N5O7P3
859.5225
03-17-07 435 (1.651) Cm (435-271:262)
1: TOF MS ES+
6.00e12

m8cm62
03-17-07 435 (1.651) Cm (435-271:292)
1: TOF MS ES+
1.60e3

03-17-07 435 (1.651) Cm (435-271:292)
1: TOF MS ES+
2.60e3
1H NMR spectrum of 13d

13C NMR spectrum of 13d
31P NMR spectrum of 13d
HRMS (ESI) spectrum of 13d
Complexation data

1) 1H NMR spectra of 11b and 11b/ZnCl$_2$

from methanol
2) IR spectra

IR spectrum of 6a

IR spectrum of 6a in the presence of ZnCl₂
IR spectrum of 6a in the presence of CuSO₄

IR spectrum of 6a in the presence of Y(NO₃)₃
IR spectrum of 6b

IR spectrum of 6b in the presence of ZnCl₂
IR spectrum of 6b in the presence of CuSO₄

IR spectrum of 6b in the presence of Y(NO₃)₃
IR spectrum of 6c

IR spectrum of 6c in the presence of ZnCl₂
IR spectrum of 6c in the presence of CuSO$_4$

IR spectrum of 6c in the presence of Y(NO$_3$)$_3$
IR spectrum of 8a

IR spectrum of 8a in the presence of ZnCl$_2$
IR spectrum of 8a in the presence of CuSO₄

IR spectrum of 8a in the presence of Y(NO₃)₃
IR spectrum of 8b

IR spectrum of 8b in the presence of ZnCl₂
IR spectrum of 8b in the presence of CuSO₄

IR spectrum of 8b in the presence of Y(NO₃)₃
IR spectrum of 11a

IR spectrum of 11a in the presence of ZnCl₂
IR spectrum of **11a** in the presence of CuSO$_4$

IR spectrum of **11a** in the presence of Y(NO$_3$)$_3$
IR spectrum of 11b

IR spectrum of 11b in the presence of ZnCl₂
IR spectrum of 11b in the presence of CuSO$_4$

IR spectrum of 11b in the presence of Y(NO$_3$)$_3$
IR spectrum of **11c**

IR spectrum of **11c** in the presence of ZnCl₂
IR spectrum of 11c in the presence of CuSO₄

IR spectrum of 11c in the presence of Y(NO₃)₃
IR spectrum of 11d

IR spectrum of 11d in the presence of ZnCl₂
IR spectrum of 11d in the presence of CuSO₄

IR spectrum of 11d in the presence of Y(NO₃)₃
IR spectrum of 13a

![IR spectrum of 13a](image)

IR spectrum of 13a in the presence of ZnCl₂

![IR spectrum of 13a in the presence of ZnCl₂](image)
IR spectrum of 13a in the presence of CuSO₄

IR spectrum of 13a in the presence of Y(NO₃)₃
IR spectrum of 13b

IR spectrum of 13b in the presence of ZnCl₂
IR spectrum of 13b in the presence of CuSO₄

IR spectrum of 13b in the presence of Y(NO₃)₃
IR spectrum of 13c

IR spectrum of 13c in the presence of ZnCl₂
IR spectrum of 13c in the presence of CuSO$_4$

IR spectrum of 13c in the presence of Y(NO$_3$)$_3$
IR spectrum of 13d

IR spectrum of 13d in the presence of ZnCl₂
IR spectrum of **13d** in the presence of CuSO₄

![IR spectrum of 13d in the presence of CuSO₄](image)

IR spectrum of **13d** in the presence of Y(NO₃)₃

![IR spectrum of 13d in the presence of Y(NO₃)₃](image)
3) Spectrofluorimetric spectra

6a in the presence of ZnCl$_2$

6a in the presence of CuSO$_4$

6a in the presence of Y(NO$_3$)$_3$
6b in the presence of ZnCl$_2$

6b in the presence of CuSO$_4$

6b in the presence of Y(NO$_3$)$_3$
6c in the presence of ZnCl$_2$

6c in the presence of CuSO$_4$

6c in the presence of Y(NO$_3$)$_3$
8a in the presence of ZnCl₂
8b in the presence of ZnCl$_2$

![Graph showing emission spectra in the presence of ZnCl$_2$.]

8b in the presence of CuSO$_4$

![Graph showing emission spectra in the presence of CuSO$_4$.]

8b in the presence of Y(NO$_3$)$_3$

![Graph showing emission spectra in the presence of Y(NO$_3$)$_3$.]
11a in the presence of ZnCl₂

![Graph 1](image1)

11a in the presence of CuSO₄

![Graph 2](image2)

11a in the presence of Y(NO₃)₃

![Graph 3](image3)
11b in the presence of ZnCl$_2$

![Graph 1](image1)

11b in the presence of CuSO$_4$

![Graph 2](image2)

11b in the presence of Y(NO$_3$)$_3$

![Graph 3](image3)
11c in the presence of ZnCl$_2$
11d in the presence of ZnCl$_2$

11d in the presence of CuSO$_4$

11d in the presence of Y(NO$_3$)$_3$
13a in the presence of ZnCl$_2$

13a in the presence of CuSO$_4$

13a in the presence of Y(NO$_3$)$_3$
13b in the presence of CuSO₄

In situ (a.u.)

13b in the presence of Y(NO₃)₃

In situ (a.u.)
13c in the presence of ZnCl$_2$

![Graph showing the intensity of light at different wavelengths for 13c in the presence of ZnCl$_2$.](image1)

13c in the presence of CuSO$_4$

![Graph showing the intensity of light at different wavelengths for 13c in the presence of CuSO$_4$.](image2)

13c in the presence of Y(NO$_3$)$_3$

![Graph showing the intensity of light at different wavelengths for 13c in the presence of Y(NO$_3$)$_3$.](image3)
13d in the presence of CuSO₄

13d in the presence of Y(NO₃)₃
4) Titration curves

Titration curves of ligands 6a-c and 8a-b with Zn$^{2+}$.

Titration curves of ligands 6a-c and 8a-b with Cu$^{2+}$.

Titration curves of ligands 6a-c and 8a-b with Y$^{3+}$.

90
Titration curves of ligands 11a-d and 13a-c with Zn$^{2+}$.

Titration curves of ligands 11a-d and 13a-d with Cu$^{2+}$.

Titration curves of ligands 11a-d and 13a-d with Y$^{3+}$.