Electronic Supplementary Information (ESI)

Understanding and improving photoelectrochemical

performance of Bi₂O₃/Bi₂S₃ composite

Ji Hyeon Kim,^a Taewan Lim,^a Joon Yong Park,^a Ahyeon Ma,^a Haeun Jung,^a Ha Young Kim,^a

Sung Ki Cho^{b,*} Hana Yoon,^{c,} and Ki Min Nam^{a,*}

^a Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.

^b Department of Chemical Engineering, Kumoh National Institute of Technology, 61 Daehakro, Gumi-si, Gyeongsangbuk-do 39177, Republic of Korea.

^c Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea.

Fig. S1 SEM images of (a) Bi₂O₃, and (b) Bi₂O₃/Bi₂S₃ composite films on the FTO substrate.

Fig. S2 (a) XRD patterns of Bi₂O₃/Bi₂S₃ (red line), and Bi₂O₃ (black line) films on the FTO substrate. (b) XRD patterns of Bi₂O₃ (black line), Bi₂O₃/Bi₂S₃ before (red line) and after (blue line) annealing process at 200 °C for 3h in air.

Fig. S3 Element distribution maps of (a) Bi, (b) S, and (c) O on the Bi₂O₃/Bi₂S₃(Sono) composite.

Fig. S4 SEM images of (a) $Bi_2O_3/Bi_2S_3(SILAR)$, (b) $Bi_2O_3/Bi_2S_3(Dip)$, (c) $Bi_2O_3/Bi_2S_3(drop)$, and (d) Bi_2S_3NW .

Fig. S5 UV-visible absorption spectrums of (a) $Bi_2O_3/Bi_2S_3(Sono)$, (b) $Bi_2O_3/Bi_2S_3(SILAR)$, (c) $Bi_2O_3/Bi_2S_3(Dip)$, (d) $Bi_2O_3/Bi_2S_3(drop)$, and (e) Bi_2S_3NW .

Fig. S6 LSVs of (a) Bi₂O₃/Bi₂S₃(SILAR), (b) Bi₂O₃/Bi₂S₃(Dip), (c) Bi₂O₃/Bi₂S₃(drop), and (d) Bi₂S₃NW electrodes under UV-visible illumination and visible illumination (> 425 nm) in a 0.1 M Na₂SO₃ and 0.1 M Na₂S solution. Scan rate: 20 mV/s. Light intensity: 100 mW/cm².

Fig. S7 (a) UV-visible absorption spectrums of Bi₂O₃/Bi₂S₃ (red line), and Bi₂O₃ (black line) films. Tauc plots of (b) Bi₂O₃, and (c) Bi₂O₃/Bi₂S₃ electrodes.

Fig. S8 (a) The Bi_2S_3 to Bi_2O_3 molar ratios measured by the energy-dispersive X-ray (EDX) spectroscopy. (b) Photocurrent density as a function of film thickness and reaction period (Bi_2S_3 loading amount) at 0.75V vs. RHE.

Fig. S9 SEM cross-section images of the $Bi_2O_3/Bi_2S_3(Sono)$ composites depending on the precursor concentrations of (a) 10, (b) 20, (c) 30, and (d) 40 mM.

Fig. S10 Current-time response curve of Bi_2O_3/Bi_2S_3 (Sono) electrode under UV-visible illumination in 0.4 V vs. RHE in a 0.1 M Na₂SO₃ and 0.1 M Na₂S solution. Light intensity: 100 mW/cm².

Fig. S11 (a) LSV, and (b) Current-time response curve (0.1 V vs. Ag/AgCl) of $Bi_2O_3/Bi_2S_3(Sono)$ composite under UV-visible illumination in a 0.1 M phosphate buffer (pH 7). Light intensity: 100 mW/cm². (c) Photocurrent density of electrodes under UV-visible illumination at an applied potential of 1.2 V vs. RHE in a 0.1 M phosphate buffer (pH 7).

Fig. S12 XRD patterns of $Bi_2O_3/Bi_2S_3(Sono)$ composite after water oxidation indicating that the decomposition of Bi_2S_3 in the solution.

Fig. S13 Cyclic voltammograms of Pt UME tip measured in 1 mM ferrocene methanol ($D = 6.7 \times 10^{-6}$ cm²/s)/0.1 M Na₂SO₄ solution before and after approach to the substrate. Assuming that Bi₂O₃/Bi₂S₃(Sono) substrate is almost insulating at the open circuit under dark, the normalized current (*I_T*) for the negative feedback Bi₂O₃/Bi₂S₃(Sono) substrate can be defined as;[1]

$$I_T(L) = \frac{i_T}{i_{T,\infty}} = \left[0.292 + \frac{1.515}{(d/a)} + 0.6553\exp(-2.4035/(d/a))\right]^{-1}$$

where i_T and $i_{T,\infty}$ are the steady-state tip current when the tip is close to the substrate, and far from the substrate, respectively, and *d* is distance from substrate. For cyclic voltammogram, the measured i_T and $i_{T,\infty}$ were 1.2×10^{-9} A and 1.3×10^{-9} A, respectively. Consequently, d is obtained as 15 µm according to the above equation.

[1] A. J. Bard, L. R. Faulkner, John Wiley & Sons, Inc., (2001) 34.