Supporting Information

Synthesis, antiviral, antibacterial activities and action mechanism of penta-1,4-dien-3-one oxime ether derivatives containing quinoxaline moiety

Rongjiao Xia, Tao Guo, Mei Chen, Shijun Su, Jun He, Xu Tang, shichun Jiang, Wei Xue*

State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China

‡These authors contributed to this work equally

*Corresponding author: Wei Xue; e-mail: wxue@gzu.edu.cn; Tel/Fax: 0086-0851-88292090
Content

1. Biological activities tests ...1

1.1. Antiviral activities in vivo ...1

1.1.1. Curative activity of the target compounds against TMV in vivo ...1

1.1.2. Protection activity of the target compounds against TMV in vivo ...1

1.1.3. Inactivation activity of the title compounds against TMV in vivo ...1

1.2. Antibacterial activity in vitro ..1

1.3. Expression and purification of TMV CP ..2

1.4. Interaction studies between 6g and 6i with TMV CP ...2

1.5. Scanning electron microscopy of 6k ..2

2. 1H NMR, 13C NMR, 19F NMR and HRMS spectrum of the title compounds ..3
1. Biological activities tests

1.1 Antiviral activities *in vivo*

1.1.1 Curative activity of the target compounds against TMV *in vivo*

As the test subjects selecting Growing *N. tabacum* L. leaves of the same age, the whole leaves that had beforehand were scattered with silicon carbide, was dipped and inoculated containing solution of the TMV virus. The leaves were washed with water after about 30 min and desiccation. The compound solution and the solvent were smeared on the left and right side of the leaf, respectively. After about 3-4 d, the local lesion numbers were counted and recorded. Each compound was tested three times.

1.1.2 Protection activity of the target compounds against TMV *in vivo*

The compound solution and the solvent were smeared on the left and right side of the leaf, respectively. After 12 h, the whole leaves that had beforehand were scattered with silicon carbide, was dipped and inoculated containing solution of the TMV virus. The leaves were washed with water after about 30 min and desiccation. After about 3-4 d, the local lesion numbers were counted and recorded. Each compound was tested three times.

1.1.3 Inactivation activity of the target compounds against TMV *in vivo*

The whole leaves had beforehand were scattered with silicon carbide, the TMV virus was mixed with a compound solution of the same volume for 30 min. The mixed solution and the untreated virus solution were smeared on the left and right side of the leaf, respectively. After about 3-4 d, the local lesion numbers were counted and recorded. Each compound was tested three times.

1.2 Antibacterial activities *in vitro*

Antibacterial activities were evaluated against there pathogenic bacteria (Xac, Xoo and Rs) in vitro with turbidimeter test. The mother liquor of two concentrations of 100 and 50 μg/mL was prepared by dissolving the title compound in dimethyl sulfoxide (150 μL) and 0.1% (v/v) Tween-20. In the 15ml tube, added to 1ml of mother liquor and 4 mL of nutrient broth (NB, 3 g of beef extract, 1 g of yeast powder, 10 g of glucose, 5 g of peptone, and 1000 mL of distilled water, pH 7.0 to 7.2). after that, 40 μL of NB including Xac, Xoo or Rs was added. The inoculated test tubes were incubated at (28±1) °C under continuous shaking at 180/min for 24-48 h. When the optical density at 595 nm (OD$_{595}$), growth of the cultures was controlled spectrophotometrically and given by corrected turbidity. The relative inhibitory rate (I %) were calculated as below, C_{tur} expressed the corrected turbidity value(OD$_{595}$) of bacterial growth on undisposed NB; T_{tur} expressed the corrected turbidity value(OD$_{595}$) of bacterial growth on disposed NB.
\[\% = \frac{C_{\text{cat}} - T_{\text{cat}}}{C_{\text{cat}}} \times 100\% \]

five concentrations were at 100, 50, 25, 12.5, and 6.25 \(\mu g/mL \), EC50 values of some title compounds were obtained against Xac Xoo and Rs. Each experiment was computed at least three times.

1.3 Expression and purification of TMV CP

The expression vector, pET28a-TMV CP, containing the full-length TMV CP gene, was stored at -80°C in our lab. A freshly transformed overnight culture of \(\text{Escherichia coli} \) strain BL21(DE3) containing the plasmid pET28a-TMV CP was transferred to 1 L Luria broth. The cells were grown at 37 °C in Luria-Bertani medium supplemented with 50 \(\mu g/ml \) kanamycin, and with an OD600 of 0.8. The cells were shaken at 200 rpm. Then protein expression was induced with 0.8 mM IPTG at 16 °C overnight. The cells were harvested by centrifugation and then stored at -80 °C. When analyzed, the cells were resuspended in lysis buffer (20 mM PB, 500 mM NaCl, 30 mM imidazole, 5 mM \(\beta \)-mercaptoethanol and 5% glycerol, pH 7.2) and then lysed at 4 °C by sonication. The lysate was clarified by centrifugation at 12,000 g for 30 min at 4 °C, the soluble supernatants were loaded onto a 5 ml Ni-NTA column (GE Healthcare, USA), and the protein was eluted with a linear gradient of 30-350 mM imidazole (pH 7.2). The crude protein was performed at 4 °C using a desalting column (GE Healthcare, USA) attached to an AKTA purifier protein liquid chromatography system (GE Healthcare, USA), and the fractions containing target protein with His-tags were pooled, concentrated to a suitable concentration by ultrafiltration (10 kDa cut-off). The dealt protein concentration was determined using a Genequant100 (GE Healthcare, USA), and stored at -80 °C until further analysis.

1.4 Interaction studies between 6g, 6i and TMV CP

Using traditional method, the binding was calculated for MST Monolith NT.115 (Nano Temper Technologies, Germany). According to NT-647 dye (Nano Temper Technologies, Germany), 0.5 \(\mu M \) purified recombinant proteins and a series of ligands from 0 to 5 \(\mu M \) was incubated for about 5 min, final concentration of 20 nM was used in the thermophoresis experiment. The selected compounds dissolution of in DMSO were made into a sixteen point dilution series. Sixteen point dilution series were successively transferred to protein solutions at 10 mM Tris-HCl and 100 mM sodium chloride pH 7.5, 0.05% Tween-20. The marked TMV CP with each dilution point was incubated about 15 min at indoor temperature, samples were added to standard capillaries (NanoTemper Technologies, Germany) under a setting of 20% light emitting diode and 40% infrared laser, using microscale thermophoresis system was measure. Laster on and off time were set at 30 and 5s, Using the mass action equation in the NT. 115, the Kd values were calculated from the average of three replicates experiment.

1.5 Scanning electron microscope sample preparation of 6k
The mechanism antibacterial action of compound against xac was analyzed by scanning electron microscopy (SEM). 1.5 mL Xac cells were centrifuged and washed 3 times with PBS (pH = 7.1) incubated in the logarithmic phase, and re-suspended in 1.5 mL of PBS (pH = 7.1). Subsequently, the Xac was incubated with compound 6k that at concentrations of 50 \(\mu \)g/mL and 100 \(\mu \)g/mL, and an equivalent volume of DMSO for (28±1) °C, under continuous shaking at 180/min for 8-10 h. After incubation, these samples were washed 3 times with PBS (pH = 7.1). Whereafter, the bacterial cells were fixed with 2.5% glutaraldehyde at 4°C for 8 h, and then dehydrated with different concentrations of ethanol series about 10 min/time. Following dehydration, the samples were freezing dried and coated with gold, and visualized using Nova Nano SEM 450.

2. \(^1\)H NMR, \(^{13}\)C NMR, \(^{19}\)F NMR and HRMS spectrum of the title compounds

\((1E,3Z,4E)-1-(2-((2-chlorobenzyl)oxy)phenyl)-5-(pyridin-2-yl)penta-1,4-dien-3-one O-quinoxalin-2-yl oxime (6a):\)
White solid (51%), m.p. 180-181 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 9.03 (s, 1H, Py-6-H), 8.66 (d, \(J = 5.6 \) Hz, 1H, Qu-3-H), 8.10 (d, \(J = 8.3 \) Hz, 1H, Qu-5-H), 8.00 (d, \(J = 8.3 \) Hz, 1H, Ar(2-Cl)-3-H), 7.82 (d, \(J = 16.8 \) Hz, 1H, Qu-6-H), 7.79 – 7.75 (m, 1H, Qu-8-H), 7.74 – 7.69 (m, 2H, Ar(2-O)-6-H, Qu-7-H), 7.70 – 7.63 (m, 3H, Py-3,4,5-H), 7.54 (d, \(J = 7.7 \) Hz, 1H, Ar(2-Cl)-4-H), 7.48 (s, 1H, Ar(2-O)-4-H), 7.42 (d, \(J = 9.1 \) Hz, 2H, Ar(2-Cl)-5,6-H), 7.37 – 7.32 (m, 2H, Py-CH=, Ar-CH=), 7.18 (td, \(J = 7.7, 1.6 \) Hz, 1H, Ar(2-O)-3-H), 7.10 – 7.03 (m, 2H, Ar(2-O)-5-H, Py-C=CH), 7.00 (d, \(J = 8.2 \) Hz, 1H, Ar-C(CH)), 5.25 (s, 2H, CH\(_2\)). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 159.87, 157.96, 156.66, 154.26, 149.96, 140.25, 140.13, 137.17, 137.07, 136.73, 135.43, 134.35, 132.45, 131.11, 130.61, 129.39, 129.03, 128.99, 128.60, 127.98, 127.95, 127.60, 127.03, 125.01, 124.94, 123.28, 121.48, 116.95, 112.74, 67.64. HRMS calcd for C\(_{31}\)H\(_{24}\)O\(_2\)N\(_4\)Cl \([\text{M+H}]^+\) 519.1582, found 519.1568.

\((1E,3Z,4E)-1-(2-((2,4-dichlorobenzyl)oxy)phenyl)-5-(pyridin-2-yl)penta-1,4-dien-3-one O-quinoxalin-2-yl oxime (6b): \)
White solid (47%), m.p. 193-195 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 9.06 (s, 1H, Py-6-H), 8.68 (t, \(J = 7.6 \) Hz, 1H, Qu-3-H), 8.11 (d, \(J = 7.4 \) Hz, 1H, Qu-5-H), 8.02 – 7.98 (m, 1H, Ar(2,4-di-Cl)-3-H), 7.83 – 7.76 (m, 2H, Qu-6-H), 7.76 – 7.66 (m, 3H, Ar(2-O)-6-H, Qu-7-H, Py-3-H), 7.66 – 7.61 (m, 2H, Py-4,5-H), 7.51 – 7.38 (m, 3H, Ar(2,4-di-Cl)-5,6-H, Ar(2-O)-4-H), 7.35 (dd, \(J = 4.3, 1.8 \) Hz, 2H, Py-CH=, Ar-CH=), 7.28 (dd, \(J = 4.9, 4.1 \) Hz, 1H, Ar(2-O)-3-H), 7.10 – 7.02 (m, 2H, Ar(2-O)-5-H, Py-C(CH)), 6.98 (d, \(J = 8.2 \) Hz, 1H, Ar-C(CH)), 5.19 (s, 2H, CH\(_2\)). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 159.72, 157.99, 156.42, 154.20, 150.00, 140.25, 140.17, 137.09, 137.06, 136.76, 135.21, 134.15, 133.07, 133.03, 131.13, 130.63, 129.51, 129.22, 129.05, 127.96, 127.85, 127.62, 127.44, 125.06, 124.85, 123.39, 123.26, 121.70, 116.97, 112.69, 67.14. HRMS calcd for C\(_{31}\)H\(_{23}\)O\(_2\)N\(_4\)Cl\(_2\) \([\text{M+H}]^+\) 553.1193, found 553.1174.
(1E,3Z,4E)-1-(2-((3-chlorobenzyl)oxy)phenyl)-5-(pyridin-2-yl)penta-1,4-dien-3-one O-quinoxalin-2-yl oxime (6c):
White solid (59%), m.p. 172-173 °C. 1H NMR (400 MHz, CDCl3) δ 9.04 (s, 1H, Py-6-H), 8.67 (d, J = 4.7 Hz, 1H, Qu-3-H), 8.05 (dd, J = 41.8, 8.3, 1.0 Hz, 2H, Qu-5,6-H), 7.79 – 7.75 (m, 1H, Qu-8-H), 7.74 (dd, J = 4.2, 1.8 Hz, 2H, Py-4,5-H), 7.69 (dd, J = 4.5, 2.8 Hz, 1H, Ar(3-Cl)-4-H), 7.29 – 7.26 (m, 1H, Ar-CH=), 7.21 (d, J = 8.4 Hz, 2H, Ar(2-O)-3,5-H), 7.16 – 7.10 (m, 1H, Py-C=CH), 6.96 (d, J = 8.1 Hz, 1H, Ar-C=CH), 5.10 (s, 2H, CH2). 13C NMR (101 MHz, CDCl3) δ 159.78, 157.98, 156.75, 154.20, 149.99, 140.26, 140.17, 137.10, 137.09, 136.75, 135.41, 133.74, 131.03, 130.60, 129.06, 128.80, 128.60, 127.98, 127.96, 127.59, 125.01, 124.87, 123.36, 123.19, 121.44, 116.95, 112.58, 69.70. HRMS calcd for C31H24O2N4Cl [M+H]+ 519.1582, found 519.1573.

(1E,3Z,4E)-1-(2-((2-fluorobenzyl)oxy)phenyl)-5-(pyridin-2-yl)penta-1,4-dien-3-one O-quinoxalin-2-yl oxime (6d):
White solid (55%), m.p. 155-156 °C. 1H NMR (400 MHz, CDCl3) δ 8.93 (s, 1H, Py-6-H), 8.58 (d, J = 4.0 Hz, 1H, Qu-3-H), 8.02 (dd, J = 8.2, 1.0 Hz, 1H, Qu-5-H), 7.92 (dd, J = 8.3, 0.8 Hz, 1H, Ar(2-F)-4-H), 7.68 (d, J = 10.2 Hz, 1H, Qu-6-H), 7.62 – 7.53 (m, 4H, Ar(2-F)-3-H, Qu-7-H, Py-3,4-H), 7.40 (dt, J = 28.9, 11.7 Hz, 2H, Py-5-H, Ar(2-O)-4-H), 7.16 – 7.10 (m, 1H, Ar-CH=), 7.00 – 6.92 (m, 3H, Ar(2-O)-3,5-H, Py-C=CH), 6.91 – 6.86 (m, 1H, Ar-C=CH), 5.14 (s, 2H, CH2). 13C NMR (101 MHz, CDCl3) δ 158.85, 156.91, 155.74, 153.25, 148.89, 139.22, 139.09, 136.13, 136.02, 135.63, 134.46, 129.99, 129.52, 128.65, 128.56, 128.40, 128.36, 127.98, 127.06, 126.93, 126.51, 124.04, 123.92, 123.28, 122.17, 120.42, 115.98, 114.37, 114.16, 111.67, 63.30. 19F NMR (376 MHz, CDCl3) δ -118.53. HRMS calcd for C31H24O2N4F [M+H]+ 503.1878, found 503.1864.

(1E,3Z,4E)-1-(2-((2-chlorobenzyl)oxy)phenyl)-5-(pyridin-2-yl)penta-1,4-dien-3-one O-(6-chloroquinoxalin-2-yl) oxime (6e):
Pink solid (52%), m.p. 198-199 °C. 1H NMR (400 MHz, CDCl3) δ 9.01 (s, 1H, Py-6-H), 8.66 (s, 1H, Qu-3-H), 8.09 (s, 1H, Ar(2-Cl)-3-H), 7.93 (d, J = 8.5 Hz, 1H, Ar(2-O)-6-H), 7.79 (dd, J = 23.1, 11.9 Hz, 2H, Py-3,4-H), 7.67 (d, J = 15.2 Hz, 3H, Py-S-H, Ar(2-Cl)-4-H, Ar(2-O)-4-H), 7.54 (dd, J = 31.5, 24.6 Hz, 2H, Ar(2-Cl)-5,6-H), 7.39 (dd, J = 18.7, 10.7 Hz, 3H, Py-C=CH=, Qu-5,7-H), 7.26 (2H, Qu-8-H, Ar-CH=), 7.18 (s, 1H, Ar(2-O)-3-H), 7.07 (d, J = 5.4 Hz, 2H, Ar(2-O)-5-S-H, Py-C=CH=), 7.01 (d, J = 7.6 Hz, 1H, Ar-C=CH), 5.25 (s, 2H, CH2). 13C NMR (101 MHz, CDCl3) δ 160.15, 158.05, 156.72, 154.20, 149.98, 140.32, 138.86, 138.15, 137.24, 136.72, 135.71, 134.34, 133.10, 132.52, 131.43, 131.17, 129.41, 129.12, 129.02, 128.64, 128.06, 128.00, 127.01, 124.97, 124.77, 123.32, 123.30, 121.50, 116.86, 112.79, 67.70. HRMS calcd for C31H24O2N4Cl2 [M+H]+ 553.1193, found 553.1183.
(1E,3Z,4E)-1-(2-((2,4-dichlorobenzyl)oxy)phenyl)-5-(pyridin-2-yl)penta-1,4-dien-3-one O-(6-chloroquinoxalin-2-yl) oxime (6f): Pink solid (42%), m.p. 197-199 °C. 1H NMR (400 MHz, CDCl$_3$) δ 9.04 (s, 1H, Py-6-H), 8.68 (dd, J = 10.7, 4.4 Hz, 1H, Ar-3-H), 8.09 (d, J = 2.3 Hz, 1H, Ar(2,4-di-Cl)-3-H), 7.93 (d, J = 8.9 Hz, 1H, Ar(2-O)-6-H), 7.84 – 7.70 (m, 3H, Py-3,4,5-H), 7.70 – 7.58 (m, 3H, Ar(2,4-di-Cl)-5,6-H, Ar(2-O)-4-H), 7.51 – 7.38 (m, 3H, Py-CH=, Qu-5,7-H), 7.37 – 7.32 (m, 2H, Qu-8-H, Ar-CH=), 7.31 – 7.27 (m, 1H, Ar(2-O)-3-H), 7.11 – 7.01 (m, 2H, Ar(2-O)-5-H, Py-C=CH), 6.98 (d, J = 8.2 Hz, 1H, Ar-C=CH), 5.19 (s, 2H, CH$_2$).

13C NMR (101 MHz, CDCl$_3$) δ 160.01, 158.04, 156.46, 154.09, 150.01, 140.31, 138.82, 138.06, 137.21, 136.80, 135.50, 134.18, 133.16, 133.12, 133.00, 131.48, 131.22, 129.53, 129.24, 129.09, 128.05, 127.89, 127.43, 124.96, 124.66, 123.46, 123.31, 121.71, 116.83, 112.70, 67.16.

HRMS calcd for C$_{31}$H$_{24}$O$_2$N$_4$Cl [M+H]$^+$ 587.0803, found 587.0775.

(1E,3Z,4E)-1-(2-((3-chlorobenzyl)oxy)phenyl)-5-(pyridin-2-yl)penta-1,4-dien-3-one O-(6-chloroquinoxalin-2-yl) oxime (6g): White solid (49%), m.p. 153-155 °C. 1H NMR (400 MHz, CDCl$_3$) δ 9.01 (s, 1H, Py-6-H), 8.67 (d, J = 4.0 Hz, 1H, Ar-3-H), 8.09 (d, J = 2.2 Hz, 1H, Ar(2-O)-6-H), 7.93 (d, J = 8.9 Hz, 1H, Py-3-H), 7.78 – 7.72 (m, 3H, Py-4,5-H, Ar(3-Cl)-4-H), 7.45 – 7.39 (m, 1H, Ar(3-Cl)-2-H), 7.36 (t, J = 8.8 Hz, 4H, Py-CH=, Qu-5,7,8-H), 7.28 (dd, J = 5.8, 3.0 Hz, 1H, Ar-CH=), 7.21 (d, J = 8.4 Hz, 2H, Ar(2-O)-3,5-H), 7.06 (t, J = 7.5 Hz, 1H, Py-C=CH), 6.97 (d, J = 8.2 Hz, 1H, Ar-C=CH), 5.11 (s, 2H, CH$_2$).

13C NMR (101 MHz, CDCl$_3$) δ 160.08, 158.04, 156.80, 154.10, 150.01, 140.32, 138.84, 138.08, 137.25, 136.78, 135.70, 133.12, 131.46, 131.12, 129.10, 128.81, 128.62, 128.07, 124.91, 124.67, 123.43, 123.24, 121.44, 116.84, 112.57, 69.70.

HRMS calcd for C$_{31}$H$_{23}$O$_2$N$_4$Cl$_2$ [M+H]$^+$ 553.1193, found 553.1187.

(1E,3Z,4E)-1-(4-((2-chlorobenzyl)oxy)phenyl)-5-(pyridin-2-yl)penta-1,4-dien-3-one O-quinoxalin-2-yl oxime (6h): White solid (54%), m.p. 160-161 °C. 1H NMR (400 MHz, CDCl$_3$) δ 9.10 (s, 1H, Py-6-H), 8.68 (dd, J = 5.7, 4.9 Hz, 1H, Qu-3-H), 8.05 (dd, J = 41.1, 8.3 Hz, 2H, Qu-5-H, Ar(2-Cl)-3-H), 7.77 – 7.70 (m, 2H, Ar(4-O)-2,6-H), 7.68 – 7.63 (m, 2H, Qu-6,8-H), 7.58 – 7.51 (m, 2H, Py-CH=, Ar(2-O)-3,5-H), 7.26 – 7.22 (m, 1H, Ar-CH=), 7.03 (d, J = 8.7 Hz, 2H, Py-C=CH, Ar-C=CH), 5.23 (s, 2H, CH$_2$).

13C NMR (101 MHz, CDCl$_3$) δ 159.89, 159.07, 158.03, 154.11, 149.94, 140.23, 140.12, 139.88, 137.09, 136.80, 136.51, 134.24, 132.62, 130.59, 129.53, 129.45, 129.15, 129.02, 128.77, 128.71, 127.93, 127.57, 127.02, 124.36, 123.49, 115.21, 114.56, 67.18.

HRMS calcd for C$_{31}$H$_{23}$O$_2$N$_4$Cl [M+H]$^+$ 519.1582, found 519.1565.

(1E,3Z,4E)-1-(4-((4-chlorobenzyl)oxy)phenyl)-5-(pyridin-2-yl)penta-1,4-dien-3-one O-quinoxalin-2-yl oxime (6i): White solid (47%), m.p. 161-163 °C. 1H NMR (400 MHz, CDCl$_3$) δ 8.99 (s, 1H, Py-6-H), 8.69 (d, J = 4.0 Hz, 1H, Qu-3-H), 8.09 (dd, J = 8.2, 1.1 Hz, 1H, Qu-5-H), 8.00 (dd, J = 17.6, 8.8 Hz, 2H, Ar(4-O)-2,6-H), 7.74 (qd, J = 7.5, 1.6 Hz, 2H, Ar-CH=).
Qu-6,8-H), 7.67 – 7.62 (m, 1H, Qu-7-H), 7.53 (t, J = 8.5 Hz, 3H, Py-3,4,5-H), 7.37 (d, J = 5.7 Hz, 4H, Ar-(4-Cl)-2,3,5,6-H), 7.34 – 7.27 (m, 2H, Py-CH=, Ar(4-O)-2,3-H), 7.00 (dd, J = 12.4, 10.9 Hz, 3H, Ar-CH=, Py-C=CH, Ar-C=CH), 5.08 (s, 2H, CH$_2$).

13C NMR (101 MHz, CDCl$_3$) δ 160.06, 159.45, 157.73, 153.94, 150.08, 140.25, 140.09, 138.93, 138.16, 137.20, 136.82, 135.14, 133.93, 130.61, 129.11, 129.00, 128.93, 128.80, 127.99, 127.59, 123.78, 123.34, 120.98, 118.85, 115.21, 69.30. HRMS calcd for C$_{31}$H$_{23}$O$_2$N$_4$Cl $[\text{M+H}]^+$ 519.1588, found 519.1582.

(1E,3Z,4E)-1-(4-((2,4-dichlorobenzyl)oxy)phenyl)-5-(pyridin-2-yl)penta-1,4-dien-3-one O-quinoxalin-2-yl oxime (6j):

Yellow solid (43%), m.p. 128-129 °C. 1H NMR (400 MHz, CDCl$_3$) δ 9.03 (s, 1H, Py-6-H), 8.60 (d, J = 4.4 Hz, 1H, Qu-3-H), 7.98 (dd, J = 42.4, 8.2 Hz, 2H, Qu-5-H, Ar(2,4-Cl)-3-H), 7.70 – 7.63 (m, 2H, Qu-6,8-H), 7.54 – 7.48 (m, 2H, Qu-7-H, Py-3-H), 7.46 – 7.41 (m, 2H, Py-4,5-H), 7.39 (d, J = 3.5 Hz, 1H, Ar(2,4-Cl)-5-H), 7.38 – 7.34 (m, 2H, Ar(2,4-Cl)-6-H, Py-CH=), 7.25 – 7.20 (m, 2H, Ar(2,4-Cl)-5,6-H), 7.17 (d, J = 4.9 Hz, 1H, Ar-CH=), 6.94 (d, J = 8.7 Hz, 2H, Py-C=CH, Ar-C=CH), 5.10 (s, 2H, CH$_2$).

13C NMR (101 MHz, CDCl$_3$) δ 159.62, 159.04, 158.05, 154.12, 149.97, 140.24, 140.15, 139.79, 137.09, 136.84, 136.55, 134.33, 133.22, 132.96, 130.64, 129.61, 129.58, 129.31, 129.05, 128.94, 127.94, 127.62, 127.40, 126.32, 125.32, 115.19, 114.74, 66.65. HRMS calcd for C$_{31}$H$_{23}$O$_2$N$_4$Cl $[\text{M+H}]^+$ 553.1193, found 553.1171.

(1E,3Z,4E)-1-(4-((2-fluorobenzyl)oxy)phenyl)-5-(pyridin-2-yl)penta-1,4-dien-3-one O-quinoxalin-2-yl oxime (6k):

White solid (45%), m.p. 144-146 °C. 1H NMR (400 MHz, CDCl$_3$) δ 9.03 (s, 1H, Py-6-H), 8.60 (d, J = 4.0 Hz, 1H, Qu-3-H), 8.07 – 7.89 (m, 2H, Qu-5-H, Ar(2-F)-4-H), 7.69 – 7.63 (m, 2H, Qu-6,8-H), 7.52 (d, J = 8.7 Hz, 2H, Ar(2-F)-3-H, Qu-7-H), 7.49 – 7.41 (m, 2H, Py-3,4-H), 7.39 (d, J = 4.5 Hz, 1H, Ar-(4-O)-3-H), 7.36 (d, J = 3.4 Hz, 1H, Ar-(2-F)-6-H), 7.27 (dd, J = 10.3, 4.5 Hz, 1H, Py-CH=), 7.21 – 7.16 (m, 2H, Ar-(2-F)-5-H, Ar-(4-O)-3-H), 7.10 (dd, J = 10.9, 4.1 Hz, 1H, Ar-(4-O)-5-H), 7.06 – 7.01 (m, 1H, Ar-CH=), 6.95 (d, J = 8.7 Hz, 2H, Py-C=CH, Ar-C=CH), 5.11 (s, 2H, CH$_2$). 13C NMR (101 MHz, CDCl$_3$) δ 159.96, 159.07, 158.06, 154.13, 149.96, 140.25, 140.14, 139.92, 137.11, 136.82, 136.51, 130.61, 129.96, 129.88, 129.70, 129.54, 129.04, 128.67, 127.94, 127.59, 124.38, 124.34, 123.51, 123.37, 115.54, 115.33, 115.17, 114.54, 63.76. 19F NMR (376 MHz, CDCl$_3$) δ -118.55. HRMS calcd for C$_{31}$H$_{24}$O$_2$N$_4$F $[\text{M+H}]^+$ 503.1878, found 503.1863.

(1E,3Z,4E)-1-(4-((2-chlorobenzyl)oxy)phenyl)-5-(pyridin-2-yl)penta-1,4-dien-3-one O-(6-chloroquinoxalin-2-yl) oxime (6l):

Yellow solid (51%), m.p. 129-131 °C. 1H NMR (400 MHz, CDCl$_3$) δ 9.08 (s, 1H, Py-6-H), 8.67 (d, J = 4.0 Hz, 1H, Qu-3-H), 8.09 (t, J = 3.7 Hz, 1H, Ar(2-Cl)-3-H), 7.93 (d, J = 8.9 Hz, 1H, Ar-(4-O)-2-H), 7.73 (td, J = 7.7, 1.7 Hz, 1H, Ar-(4-O)-6-H), 7.67 (dt, J = 13.7, 5.8 Hz, 2H, Py-3,4-H), 7.63 – 7.56 (m, 3H, Py-5-H, Ar(2-Cl)-4,6-H), 7.56 – 7.52 (m, 1H, Ar(2-Cl)-5-H), 7.46 (dd, J = 10.7, 7.9 Hz, 2H, Py-CH=, Qu-5-H), 7.44 – 7.39 (m, 2H, Qu-7,8-H), 7.34 – 7.28 (m, 3H, Ar-(4-O)-3,5-H, Ar-CH=), 7.03 (d, J = 8.7 Hz, 2H, Py-C=CH, Ar-C=CH), 5.22 (s, 2H, CH$_2$). 13C NMR (101 MHz, CDCl$_3$) δ
(1E,3Z,4E)-1-(4-((4-chlorobenzyl)oxy)phenyl)-5-(pyridin-2-yl)penta-1,4-dien-3-one O-(6-chloroquinoxalin-2-yl) oxime (6m): White solid (50%), m.p. 165-167 °C. 1H NMR (400 MHz, CDCl$_3$) δ 8.98 (s, 1H, Py-6-H), 8.69 (d, $J = 4.7$ Hz, 1H, Qu-3-H), 8.11 – 7.91 (m, 3H, Ar(4-O)-2,6-H, Py-3-H), 7.75 (td, $J = 7.7, 1.8$ Hz, 1H, Py-4-H), 7.67 (dd, $J = 8.9, 2.3$ Hz, 1H, Py-5-H), 7.52 (dd, $J = 8.2, 3.8$ Hz, 3H, Ar(4-Cl)-2,3,5-H), 7.37 (d, $J = 5.3$ Hz, 4H, Ar(4-Cl)-6-H, Py-CH=, Qu-5,7-H), 7.36 – 7.27 (m, 3H, Qu-8-H, Ar(4-O)-3,5-H), 6.99 (dd, $J = 12.5, 5.9$ Hz, 3H, Ar-CH=, Py-C=CH, Ar-C=CH), 5.08 (s, 2H, CH$_2$). 13C NMR (101 MHz, CDCl$_3$) δ 160.32, 159.49, 157.81, 153.84, 150.11, 140.28, 139.09, 138.84, 138.35, 138.20, 136.80, 135.12, 133.93, 133.07, 131.40, 129.13, 129.02, 128.95, 128.85, 128.79, 128.04, 123.82, 123.43, 120.82, 118.66, 115.20, 69.28. HRMS calcd for C$_{31}$H$_{23}$O$_2$N$_4$Cl$_2$ [M+H]$^+$ 553.1193, found 553.1174.

(1E,3Z,4E)-1-(4-((2,4-dichlorobenzyl)oxy)phenyl)-5-(pyridin-2-yl)penta-1,4-dien-3-one O-(6-chloroquinoxalin-2-yl) oxime (6n): Gray solid (56%), m.p. 158-159 °C. 1H NMR (400 MHz, CDCl$_3$) δ 9.09 (s, 1H, Py-6-H), 8.68 (d, $J = 4.0$ Hz, 1H, Qu-3-H), 8.10 (d, $J = 2.2$ Hz, 1H, Ar(2,4-di-Cl)-3-H), 7.93 (d, $J = 8.9$ Hz, 1H, Ar(4-Cl)-2-H), 7.76 – 7.71 (m, 3H, Py-3,4-H), 7.63 – 7.57 (m, 3H, Py-5-H, Ar(2,4-di-Cl)-5,6-H), 7.52 (d, $J = 8.9$ Hz, 1H, Py-CH=), 7.49 (s, 1H, Qu-5-H), 7.47 – 7.42 (m, 3H, Qu-7,8-H, Ar(4-Cl)-3-H), 7.33 – 7.30 (m, 1H, Ar(4-Cl)-5-H), 7.28 (d, $J = 2.1$ Hz, 1H, Ar-CH=), 7.01 (d, $J = 8.7$ Hz, 2H, Py-C=CH, Ar-C=CH), 5.17 (s, 2H, CH$_2$). 13C NMR (101 MHz, CDCl$_3$) δ 159.69, 159.35, 158.12, 154.04, 149.98, 140.32, 140.06, 138.83, 138.08, 136.87, 136.71, 134.35, 133.23, 133.15, 132.93, 131.49, 129.61, 129.32, 129.08, 129.00, 128.86, 128.06, 127.41, 124.20, 123.56, 123.46, 115.22, 114.59, 66.66. HRMS calcd for C$_{31}$H$_{22}$O$_2$N$_4$Cl$_3$ [M+H]$^+$ 587.0803, found 587.0892.

(1E,3Z,4E)-1-(4-((2-fluorobenzyl)oxy)phenyl)-5-(pyridin-2-yl)penta-1,4-dien-3-one O-(6-chloroquinoxalin-2-yl) oxime (6o): Pink solid (41%), m.p. 154-155 °C. 1H NMR (400 MHz, CDCl$_3$) δ 9.09 (s, 1H, Py-6-H), 8.67 (d, $J = 4.0$ Hz, 1H, Qu-3-H), 8.11 – 7.91 (m, 2H, Ar(2-F)-4-H, Ar(4-O)-2-H), 7.73 (td, $J = 7.7, 1.7$ Hz, 1H, Ar(4-O)-2-H), 7.65 (ddd, $J = 31.9, 12.5, 5.5$ Hz, 4H, Ar(2-F)-3-H, Ar(4-O)-3-H), 7.54 – 7.49 (m, 2H, Py-5-H, Ar(4-Cl)-6-H), 7.44 (dd, $J = 11.8, 3.9$ Hz, 2H, Ar(2-F)-6-H, Py-CH=), 7.31 (dd, $J = 13.6, 12.2, 3.9$ Hz, 2H, Qu-5,7-H), 7.18 (t, $J = 7.5$ Hz, 1H, Qu-8-H), 7.14 – 7.08 (m, 1H, Ar-CH=), 7.03 (d, $J = 8.7$ Hz, 2H, Py-C=CH, Ar-C=CH), 5.19 (s, 2H, CH$_2$). 13C NMR (101 MHz, CDCl$_3$) δ 161.70, 160.03, 159.37, 158.13, 154.05, 149.97, 140.30, 140.18, 138.84, 138.09, 136.84, 136.67, 133.11, 131.46, 129.98, 129.74, 129.57, 129.09, 128.59, 128.05, 124.38, 124.21, 123.56, 123.43, 115.56, 115.35, 115.19, 114.39, 63.81. 19F NMR (376 MHz, CDCl$_3$) δ -118.78. HRMS calcd for C$_{31}$H$_{23}$O$_2$NFCl [M+H]$^+$ 537.1488, found 537.1472.
1H NMR, 13C NMR, 19F NMR and HRMS spectrum of the title compounds

Figure S1. 1H NMR spectrum of compound 6a

Figure S2. 13C NMR spectrum of compound 6a
Figure S3. HRMS spectrum of compound 6a

Figure S4. 1H NMR spectrum of compound 6b
Figure S5. 13C NMR spectrum of compound 6b

Figure S6. HRMS spectrum of compound 6b

2018090764 #98 RT: 0.69 AV: 1 NL: 1.91E5
T: FTMS + pESIFull ms [70.0000-1000.0000]
Figure S7. 1H NMR spectrum of compound 6c

Figure S8. 13C NMR spectrum of compound 6c
Figure S9. HRMS spectrum of compound 6c

Figure S10. 1H NMR spectrum of compound 6d
Figure S11. 13C NMR spectrum of compound 6d

Figure S12. 19F NMR spectrum of compound 6d
Figure S13. HRMS spectrum of compound 6d

20H0200778 #103 RT: 1.00 AV: 1 NL: 3.38E5
T: FTMS + pESI Full ms [70.0000-1000.0000]

Figure S14. 1H NMR spectrum of compound 6e
Figure S15. 13C NMR spectrum of compound 6e

Figure S16. HRMS spectrum of compound 6e

2018090766 #125
RT: 1.21 AV: 1 NL: 2.74E5
T: FTMS + pESIFull ms [70.00000-1000.00000]
Figure S17. 1H NMR spectrum of compound 6f

Figure S18. 13C NMR spectrum of compound 6f
Figure S19. HRMS spectrum of compound 6f

2018102319 #131 RT: 1.28 AV: 1 NL: 4.39E4
T: FTMS + p ESI Full ms [70.0000-1000.0000]

Figure S20. 1H NMR spectrum of compound 6g
Figure S21. 13C NMR spectrum of compound 6g

Figure S22. HRMS spectrum of compound 6g
Figure S23. 1H NMR spectrum of compound 6h

Figure S24. 13C NMR spectrum of compound 6h
Figure S25. HRMS spectrum of compound 6h

Figure S26. 1H NMR spectrum of compound 6i
Figure S27. 13C NMR spectrum of compound 6i

Figure S28. HRMS spectrum of compound 6i

2018090770 #99 RT: 0.96 AV: 1 NL: 2.10E6
T: FTMS + p ESI Full ms [70.00000-1000.0000]
Figure S29. 1H NMR spectrum of compound 6j

Figure S30. 13C NMR spectrum of compound 6j
Figure S30. HMNR spectrum of compound 6j

C_{21}H_{20}O_{2}N_{4}Cl_{2} = 553.11926

-3.96383 ppm

Figure S32. ^1H NMR spectrum of compound 6k
Figure S33. 13C NMR spectrum of compound 6k

Figure S34. 19F NMR spectrum of compound 6k
Figure S35. HRMS spectrum of compound 6k

201806772 #101 RT: 0.98 AV: 1 NL: 1.71E6
T: FTMS + p: ESI Full ms [70.0000-1000.0000]

Figure S36. 1H NMR spectrum of compound 6l
Figure S37. 13C NMR spectrum of compound 6l

Figure S38. HRMS spectrum of compound 6l
Figure S39. 1H NMR spectrum of compound 6m

Figure S40. 13C NMR spectrum of compound 6m
Figure S41. HRMS spectrum of compound 6m

2019102314 #117 RT: 1.13 AV: 1 NL: 2.43E5
T: FTMS + p.ESIFull ms [70.0000-1000.0000]

Figure S42. 1H NMR spectrum of compound 6n
Figure S43. 13C NMR spectrum of compound 6n

Figure S44. HRMS spectrum of compound 6n

2018090774 #129 RT: 1.26 AV: 1 NL: 1.97E4
T: FTMS + pESIFull Ms [70.00000-1000.00000]
Figure S45. 1H NMR spectrum of compound 6o

Figure S46. 13C NMR spectrum of compound 6o
Figure S47. 19F NMR spectrum of compound 6o

Figure S48. HRMS spectrum of compound 6o

2018090776 #149 RT: 1.45 AV: 1 NL: 4.23E5
T: FTMS + pESI Full ms [70.0000-1000.0000]