
Differences of solubilities, crystal structures, NMR spectra and fluorescence emissions induced by potassium cation/benzo-21-crown-7 molecular recognition

Supporting Information

1. Materials and methods S3
2. Syntheses of 1 (without potassium cations complexed) and 1-K⁺ complex (with potassium cations complexed) S3
3. Comparison of \(^1\)H NMR spectra of 1 and 1-K⁺ complex S8
4. Comparison of \(^{13}\)C NMR spectra of 1 and 1-K⁺ complex S10
5. X-ray analysis data of 1 S10
6. X-ray analysis data of 1-K⁺ complex S12
7. Solubility of 1 and 1-K⁺ complex in different solvents S14
8. \(^1\)H NMR spectrum of an equimolar acetone solution of 1 and A S14
9. \(^1\)H NMR spectrum of an equimolar acetone solution of 1 and B S16
10. \(^1\)H NMR spectrum of an equimolar acetone solution of 1 and A S17
11. \(^1\)H NMR spectrum of an equimolar acetone solution of 1 and B S18
12. \(^1\)H NMR spectrum of an equimolar acetonitrile solution of 1 and A S19
13. \(^1\)H NMR spectrum of an equimolar acetonitrile solution of 1 and B S21
14. \(^1\)H NMR spectrum of an equimolar methanol solution of 1-K⁺ complex and A S24
15. \(^1\)H NMR spectrum of an equimolar methanol solution of 1-K⁺ complex and B S24
16. Absorption and emission spectra of 1 S25
17. Absorption and emission spectra of I−K+ complex
1. Materials and methods
Detailed in the main text.

2. Syntheses of 1 (without potassium cations complexed) and 1-K^+ complex (with potassium cations complexed)

Scheme S1. Synthesis of 1 and 1-K^+ complex: (i) CH$_3$CN, K$_2$CO$_3$, refluxing, 48 h; (ii) CH$_3$CN, K$_2$CO$_3$, KPF$_6$, refluxing, 48 h.

Figure S1. 1H NMR spectrum (400 MHz, CD$_3$COCD$_3$, room temperature) of 1.
Figure S2. 1H NMR spectrum (400 MHz, CDCl$_3$, room temperature) of 1.

Figure S3. 1H NMR spectrum (400 MHz, CD$_3$SOCD$_3$, room temperature) of 1.
Figure S4. 1H NMR spectrum (400 MHz, D$_2$O, room temperature) of 1.

Figure S5. 13C NMR spectrum (125 MHz, CD$_3$COCD$_3$, room temperature) of 1.
Figure S6. 13C NMR spectrum (125 MHz, CDCl$_3$, room temperature) of 1.

Figure S7. 1H NMR spectrum (400 MHz, CD$_3$COCD$_3$, room temperature) of 1-K$^+$ complex.
Figure S8. 1H NMR spectrum (400 MHz, CDCl$_3$, room temperature) of 1-K$^+$ complex.

Figure S9. 1H NMR spectrum (400 MHz, D$_2$O, room temperature) of 1-K$^+$ complex.
Figure S10. 13C NMR spectrum (125 MHz, CD$_3$COCD$_3$, room temperature) of 1-K$^+$ complex.

3. Comparison of 1H NMR spectra of 1 and 1-K$^+$ complex

Figure S11. 1H NMR spectra (400 MHz, CDCl$_3$, room temperature) of (a) 1, (b) 1-K$^+$ complex.
Figure S12. 1H NMR spectra (400 MHz, CD$_3$COCD$_3$, room temperature) of (a) 1, (b) 1-K$^+$ complex.

Figure S13. 1H NMR spectra (400 MHz, D$_2$O, room temperature) of (a) 1, (b) 1-K$^+$ complex.
4. Comparison of 13C NMR spectra of I and I-K$^+$ complex

Figure S14. 13C NMR spectra (100 MHz, CD$_3$COCD$_3$, room temperature) of (a) I, (b) I-K$^+$ complex.

5. X-ray analysis data of I
X-ray crystallographic data: cube, green, C_{21}H_{20}O_{10}, FW 432.37, triclinic, space group P 1 21/n 1, a = 15.411 (4), b = 4.6612 (13), c = 29.404 (8) Å, α = 90.00°, β = 91.133 (8) Å, γ = 90.00°, Z = 4, Dc = 1.360 g cm^{-3}, T = 296 K, μ = 0.110 mm^{-1}, 17665 measured reflections, 2160 independent reflections, 280 parameters, 4 restraints, F(000) = 904, R$_1$ = 0.2032, wR$_2$ = 0.4487 (all data), R$_1$ = 0.1515, wR$_2$ = 0.4194 [I > 2σ(I)], max. residual density 0.567 e·Å^{-3}, and goodness-of-fit (F^2) = 1.555.
Figure S15. Ball-stick views of the X-ray structure of 1 (top) and the packing structure of 1 (bottom).

6. X-ray analysis data of 1-K⁺ complex

X-ray crystallographic data: cube, green, C₂₃H₂₄.₅F₆KNO₉P, FW 643, triclinic, space group P 1 21/n 1, \(a = 13.5206 \) (11), \(b = 14.1906 \) (12), \(c = 15.6156 \) (16) Å, \(\alpha = 90.00^\circ \), \(\beta = 113.509 \) (3) Å, \(\gamma = 90.00^\circ \), \(Z = 4 \), \(D_c = 1.555 \) g cm⁻³, \(T = \)
296 K, $\mu = 0.344 \text{ mm}^{-1}$, 24349 measured reflections, 4700 independent reflections, 390 parameters, 379 restraints, $F(000) = 1318$, $R_1 = 0.1373$, $wR_2 = 0.3214$ (all data), $R_1 = 0.1110$, $wR_2 = 0.2996$ [$I > 2\sigma(I)$], max. residual density 0.993 $e\cdot\text{Å}^{-3}$, and goodness-of-fit (F^2) = 1.032.
Figure S16. Ball-stick views of the X-ray structure of 1-K⁺ complex (top) and the packing structure of 1-K⁺ complex (bottom).

7. **Solubility of 1 and 1-K⁺ complex in different solvents**

Solubility experiment: Excess of 1 or 1-K⁺ complex was added into the flask which contained 2 mL pure solvent. The solution was stirred at room temperature for one day. The turbid solution was filtered and the solvent was removed in vacuum and the mount of dry precipitate was obtained.

Temperature: 25 °C

<table>
<thead>
<tr>
<th>solvent</th>
<th>water</th>
<th>acetonitrile</th>
<th>acetone</th>
<th>chloroform</th>
<th>methanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (g/mL)</td>
<td>0.5502</td>
<td>0.0950</td>
<td>0.1009</td>
<td>1.1050</td>
<td>1.9050</td>
</tr>
<tr>
<td>1-K⁺ complex (g/mL)</td>
<td>0.0021</td>
<td>0.3097</td>
<td>0.1245</td>
<td>0.0027</td>
<td>0.0052</td>
</tr>
</tbody>
</table>

Table S1. Solubility of 1 and 1-K⁺ complex in different solvents. “g/mL” means the mount of 1 or 1-K⁺ complex dissolved in 1 mL solvent.

8. **¹H NMR spectra of an equimolar acetone solution of 1 and A**
Figure S17. 1H NMR spectra (400 MHz, CD$_3$COCD$_3$, room temperature) of (a) 2.00 mM 1, (b) 2.00 mM 1 and A, (c) 2.00 mM A.

Figure S18. 1H NMR spectra (400 MHz, CD$_3$COCD$_3$, room temperature) of 2.00 mM 1 and A. The association constant K_a value calculated from integrations of complexed and uncomplexed peaks of H$_2$ of 1.
is \([(0.52/1.52) \times 1.00 \times 10^{-3}] / [(1 - 0.52/1.52) \times 1.00 \times 10^{-3}]^2 = 790 \text{ M}^{-1} \). The association constant \(K_a \) value calculated from integrations of complexed and uncomplexed peaks of H\(_a\) of A is \([(0.55/1.55) \times 1.00 \times 10^{-3}] / [(1 - 0.55/1.55) \times 1.00 \times 10^{-3}]^2 = 853 \text{ M}^{-1} \). Therefore \(K_a = (790 + 853)/2 = 822 \ (\pm 32) \text{ M}^{-1} \).

9. \(^1\)H NMR spectra of an equimolar acetone solution of I and B

Figure S19. \(^1\)H NMR spectra (400 MHz, CD\(_3\)COCD\(_3\), room temperature) of (a) 2.00 mM I, (b) 2.00 mM I and B, (c) 2.00 mM B.
Figure S20. 1H NMR spectra (400 MHz, CD$_3$COCD$_3$, room temperature) of 2.00 mM 1 and B. The association constant K_a value calculated from integrations of complexed and uncomplexed peaks of H$_f$ of B is $[(0.50/1.50) \times 1.00 \times 10^{-3}] / [(1 - 0.50/1.50) \times 1.00 \times 10^{-3}]^2 = 750$ M$^{-1}$. The association constant K_a value calculated from integrations of complexed and uncomplexed peaks of H$_3$ of 1 is $[(0.18/0.52) \times 1.00 \times 10^{-3}] / [(1 - 0.18/0.52) \times 1.00 \times 10^{-3}]^2 = 810$ M$^{-1}$. Therefore $K_a = (750 + 810)/2 = 780$ (\pm 30) M$^{-1}$.

10. 1H NMR spectrum of an equimolar acetonitrile solution of 1 and A
Figure S21. 1H NMR spectra (400 MHz, CD$_3$CN, room temperature) of 2.00 mM I and A. The association constant K_a value calculated from integrations of complexed and uncomplexed peaks of H$_a$ of A is $\left[\frac{(0.35/1.35) \times 1.00 \times 10^{-3}}{(1 - 0.35/1.35) \times 1.00 \times 10^{-3}}\right]^2 = 473$ M$^{-1}$. The association constant K_a value calculated from integrations of complexed and uncomplexed peaks of H$_3$ of I is $\left[\frac{(0.20/0.75) \times 1.00 \times 10^{-3}}{(1 - 0.20/0.75) \times 1.00 \times 10^{-3}}\right]^2 = 496$ M$^{-1}$. Therefore $K_a = (473 + 496)/2 = 485$ (\pm 12) M$^{-1}$.

11. 1H NMR spectrum of an equimolar acetonitrile solution of I and B
Figure S22. 1H NMR spectra (400 MHz, CD$_3$CN, room temperature) of 2.00 mM 1 and B. The association constant K_a value calculated from integrations of complexed and uncomplexed peaks of H$_3$ of 1 is $[(0.08/0.51) \times 1.00 \times 10^{-3}]/[(1 - 0.08/0.51) \times 1.00 \times 10^{-3}]^2 = 221$ M$^{-1}$. The association constant K_a value calculated from integrations of complexed and uncomplexed peaks of H$_f$ of B is $[(0.19/1.19) \times 1.00 \times 10^{-3}]/[(1 - 0.19/1.19) \times 1.00 \times 10^{-3}]^2 = 226$ M$^{-1}$. Therefore $K_a = (221 + 226)/2 = 224 \pm 3$ M$^{-1}$.

12. 1H NMR spectra of an equimolar methanol solution of 1 and A
Figure S23. 1H NMR spectra (400 MHz, MeOD, room temperature) of 5.00 mM 1 and A. The association constant K_a value calculated from integrations of complexed and uncomplexed peaks of H$_a$ of A is $[(0.23/1.70) \times 1.00 \times 10^{-3}] / [(1 - 0.23/1.70) \times 1.00 \times 10^{-3}]^2 = 181$ M$^{-1}$. The association constant K_a value calculated from integrations of complexed and uncomplexed peaks of H$_2$ of 1 is $[(0.13/1.13) \times 1.00 \times 10^{-3}] / [(1 - 0.13/1.13) \times 1.00 \times 10^{-3}]^2 = 147$ M$^{-1}$. Therefore $K_a = (147 + 181)/2 = 164 \ (\pm 17)$ M$^{-1}$.
Figure S24. 1H NMR spectra (400 MHz, MeOD, room temperature) of (a) 5 mM A, (b) 5 mM 1 and A, (c) 5 mM A, 1 and KPF$_6$, (d) 5 mM 1-K$^+$ complex.

13. 1H NMR spectra of an equimolar methanol of 1 and B
Figure S25. 1H NMR spectra (400 MHz, MeOD, room temperature) of 5.00 mM 1 and B. The association constant K_a value calculated from integrations of complexed and uncomplexed peaks of H$_3$ of 1 is \[rac{(0.04/1.22) \times 1.00 \times 10^{-3}}{(1 - 0.04/1.22) \times 1.00 \times 10^{-3}} = 35 \text{ M}^{-1}.\] The association constant K_a value calculated from integrations of complexed and uncomplexed peaks of H$_h$ of B is \[rac{(0.11/2.92) \times 1.00 \times 10^{-3}}{(1 - 0.11/2.92) \times 1.00 \times 10^{-3}} = 41 \text{ M}^{-1}.\] Therefore $K_a = (35 + 41)/2 = 38 \pm 3 \text{ M}^{-1}$.
Figure S26. 1H NMR spectra (400 MHz, MeOD, room temperature) of (a) 5 mM 1 and B, (b) 5 mM 1 and B, (c) 5 mM 1, B and KPF$_6$.
Figure S27. Partial 1H NMR spectra (400 MHz, acetone-d_6, room temperature) of (a) 1, (b) 1 and B, (c) 1-K$^+$ complex, and (d) 1-K$^+$ complex and B. The concentrations for each monomer and guest are 2 mM.

14. 1H NMR spectra of an equimolar acetone solution of 1-K$^+$ complex and A

![Diagram of 1-K$^+$ complex and A](image_url)

Figure S28. 1H NMR spectra (400 MHz, CD$_3$COCD$_3$, room temperature) of (a) 2.00 mM 1-K$^+$ complex, (b) 2.00 mM 1-K$^+$ complex and A, (c) 2.00 mM A.

15. 1H NMR spectra of an equimolar acetone solution of 1-K$^+$ complex and B
Figure S29. 1H NMR spectra (400 MHz, CD$_3$COCD$_3$, room temperature) of (a) 2.00 mM 1-K$^+$ complex, (b) 2.00 mM 1-K$^+$ complex and B, (c) 2.00 mM B.

16. Absorption and emission spectra of 1.
Figure S30. Absorption (—) and emission (┄) spectra of 1 in acetone ($c = 0.02$ mM, bandwidth = 1 nm). Raman and Rayleigh peaks have not been removed.

Figure S31. Absorption (—) and emission (┄) spectra of 1 in water ($c = 0.02$ mM, bandwidth = 1 nm). Raman and Rayleigh peaks have not been removed.
Figure S32. Absorption (—) and emission (┄┄) spectra of 1 in acetonitrile ($c = 0.02$ mM, bandwidth = 1 nm). Raman and Rayleigh peaks have not been removed.
Figure S33. Absorption (–) and emission (┄) spectra of 1 in methanol (c = 0.02 mM, bandwidth = 1 nm). Raman and Rayleigh peaks have not been removed.

17. Absorption and emission spectra of I-K⁺ complex.

Figure S34. Absorption (–) and emission (┄) spectra of 1-K⁺ complex in acetone (c = 0.02 mM, bandwidth = 1 nm). Raman and Rayleigh peaks have not been removed.
Figure S35. Absorption (—) and emission (┄) spectra of 1-K⁺ complex in water (c = 0.02 mM, bandwidth = 1 nm). Raman and Rayleigh peaks have not been removed.

Figure S36. Absorption (—) and emission (┄┄) spectra of 1-K⁺ complex in acetonitrile (c = 0.02 mM, bandwidth = 1 nm). Raman and Rayleigh peaks have not been removed.
Figure S37. Absorption (—) and emission (┄) spectra of 1-K⁺ complex in methanol (c = 0.02 mM, bandwidth = 1 nm). Raman and Rayleigh peaks have not been removed.