Insights into the levulinate-based ionic liquid class: synthesis, cellulose dissolution evaluation and ecotoxicity assessment

Andrea Mezzetta, [a] Stefano Becherini, [a] Carlo Pretti, [b,c] Gianfranca Monni, [c] Valentina Casu, [c] Cinzia Chiappe [a] and Lorenzo Guazzelli * [a]

Supporting Information

Table of contents

1H- and 13C-NMR spectra of Lev ILs pages S2-S11
IR spectra of Lev ILs pages S12-S15
Thermal gravimetric analysis (TGA) of Lev ILs pages S16-S19
Images of dissolved MCC in Lev ILs at maximum wt% pages S20-S25
Optical microscopy of dissolved MCC in Lev ILs at maximum wt% pages S26-S33
IR spectra of pristine MCC and regenerated cellulose after dissolution in Lev ILs pages S34-S38
XRD measurements of MCC and regenerated cellulose from [EMIM][Lev] page S39

[a] A. Mezzetta, S. Becherini, C. Chiappe, L. Guazzelli
Department of Pharmacy
University of Pisa
Via Bonanno 6, Pisa (Italy)
*E-mail: lorenzo.guazzelli@unipi.it
[b] C. Pretti
Department of Veterinary Sciences,
University of Pisa,
Via Livornese lato monte, San Piero a Grado (PI) 56122, Pisa, Italy
[c] C. Pretti, G. Monni, V. Casu
Interuniversity Consortium of Marine Biology of Leghorn “G. Bacci”, Livorno, 57128, Italy
Fig S1. 1H NMR of EMIMLev at 25 °C
Fig S2. 13C NMR of EMIMLev at 25 °C
Fig S3. 1H NMR of EMIMLev (25 °C) recycled after the second cycle of dissolution of MCC at 100 °C
Fig S4. 1H NMR of EMIMLev (coaxial, 25 °C) after 12h at 120 °C (thermal stability test)
Fig S5. 1H NMR of BMIMLev at 25 °C
Fig S6. 13C NMR of BMIMLev at 25 °C
Fig S7. 1H NMR of N$_{881}$Lev at 25 °C
Fig S8. 13C NMR of N881Lev at 25 °C
Fig S9. 1H NMR of P_{881}Lev at 25 °C
Fig S10. 13C NMR of P_{8881}Lev at 25 °C
Fig S11. IR of EMIMLev at 25 °C
Fig S12. IR of BMIMLev at 25 °C
Fig S13. IR of N_{8881}Lev at 25 °C
Fig S14. IR of P_{8881}Lev at 25 °C
Fig S15. Thermal gravimetric analysis (TGA) of EMIMLev
Fig S16. Thermal gravimetric analysis (TGA) of BMIMLev
Fig S17. Thermal gravimetric analysis (TGA) of N_{8881}^{1}Lev
Fig S18. Thermal gravimetric analysis (TGA) of P_{8881}Lev
Fig S19: Pictures of dissolved MCC in EMIMLev: 25 °C, 6 wt% (A); 40 °C, 8 wt% (B); 60 °C, 18 wt% (C); 80 °C, 26 wt% (D); 100 °C, 29 wt% (E)

Fig S20: Picture of undissolved MCC in EMIMLev (100 °C, 30 wt%)
Fig S21: Dissolved MCC in **EMIMLev**, at 60 °C, with addition of a precise amount (10% mol) of contaminants: H$_2$O (A), MeOH (B), EtOH (C).

Fig S22: Pictures of under vacuum dissolved MCC in **EMIMLev**: 25 °C, 8 wt% (A); 40 °C, 12 wt% (B); 60 °C, 20 wt%(C); 80 °C, 33 wt%(D); 100 °C, 38 wt%(E).
Fig S23: Pictures of under vacuum undissolved MCC in EMIMLev (A) (100 °C, 38.5 wt%) and under vacuum dissolved MCC in two-time recycled EMIMLev (B) (100 °C, 37% MCC)
Fig S24: Picture of dissolved MCC in BMIMLev: 25 °C, 2 wt% (A); 40 °C, 7 wt% (B); 60 °C, 16 wt% (C); 80°C, 22 wt%(D); 100 °C, 24 wt%(E)
Fig S25: Picture of under vacuum dissolved MCC in BMIMLev: 25 °C, 3 wt%(A); 40 °C, 12 wt% (B); 60 °C, 25 wt% (C); 80 °C, 31 wt% (D); 100 °C, 34 wt%(E)

Fig S26: Picture of under vacuum undissolved MCC in BMIMLev (100 °C, 34.5 wt%)
Fig S27: Pictures of dissolved MCC in $\text{N}_{8881}\text{Lev/DMSO}$: 60°C, 9 wt% (A); 80°C, 10 wt% (B); 100°C, 12 wt% (C). MCC dissolved in $\text{N}_{8881}\text{Lev/DMSO}$ under vacuum at room temperature: 25°C, 13 wt% (D)

Fig S28: Pictures of dissolved MCC in $\text{P}_{8881}\text{Lev/DMSO}$: 60°C, 7 wt% (A); 80°C, 8 wt% (B); 100°C, 10 wt% (C). Cellulose dissolved in $\text{P}_{8881}\text{Lev/DMSO}$ under vacuum at room temperature: 25°C, 11 wt% (D)
Fig S29: Optical microscopy of MCC dissolved in EMIMLev (100 °C, 29 wt%), 4x(A) and 15x (B)
Fig S30: Microcrystalline cellulose not completely dissolved in EMIMLev (100 °C, 30 wt%), 4x(A) and 15x (B),
Fig S31: Optical microscopy of under vacuum dissolved MCC in EMIMLev \((100 \, ^\circ\text{C}, 38 \, \text{wt}\%)\), 4x(A) and 15x (B)
Fig S32: Optical microscopy of MCC dissolved in BMIMLev (100 °C, 24 wt%), 4x(A) and 15x (B)
Fig S33: Optical microscopy of under vacuum dissolved MCC in BMIMLev (100 °C, 34 wt%), 4x(A) and 15x (B)
Fig S34: Optical microscopy of MCC dissolved in N_{8881} Lev/DMSO (100 °C, 12 wt%), 4x(A) and 15x (B)
Fig S35: Microcrystalline cellulose not completely dissolved in $N_{8881}\text{Lev/DMSO}$ (100 °C, 13 wt%), 4x(A) and 15x (B),
Fig S36: Optical microscopy of MCC dissolved in P_{8881}Lev/DMSO (100 °C, 10 wt%), 4x(A) and 15x (B)
Fig S37: IR of MCC
Fig S38: IR of regenerated cellulose after dissolution in EMIMLev at 100 °C
Fig S39: IR of regenerated cellulose after dissolution in BMIMLev at 100 °C
Fig S40: IR of regenerated cellulose after dissolution in N_{a881}Lev/DMSO at 100 °C
Fig S41: IR of regenerated cellulose after dissolution in \(P_{881} \text{Lev/DMSO} \) at 100 °C
Fig S42: Interferograms of MCC and regenerated cellulose from [EMIM][Lev] at various temperatures