Supporting Information

Green synthesis of Ag@Au bimetallic regenerated cellulose nanofibers for catalytic applications

Mayakrishnan Gopiraman,1 Somasundaram Saravanamoorthy,2 Ramaganthan Baskar,3 Andivelu Ilangovan,2 Ill-Min Chung,1,*

1Department of Applied Bioscience, College of Life & Environment Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
2School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
3Department of Chemistry, Indian Institute of Technology, Chennai, Tamilnadu 600036, India

*Corresponding author. Tel.: +82 02 450 3730; Fax: +82 02 446 7856.
E-mail addresses: imcim@konkuk.ac.kr, illminchung@gmail.com (I.M. Chung).
**Fig. S1.** SEM images of Ag@Au/CNC nanocomposite.

**Fig. S2.** XPS survey spectra of Ag/CNCs, Au/CNCs and Ag@Au/CNCs.
**Fig. S3.** FT-IR spectra of cellulose acetate nanofibers (CANFs), regenerated cellulose nanofibers (CNCs), Ag/CNCs, Au/CNCs and Ag@Au/CNCs.

**Fig. S4.** UV–vis spectra of 4-nitrophenol in the presence and absence of NaBH₄.
Fig. S5. UV–vis spectra of 2-nitrophenol in the presence and absence of NaBH$_4$.

Fig. S6. UV–vis spectra of time dependent reduction process of 4-nitrophenol in the presence of NaBH$_4$ by regenerated cellulose nanofibers.