Supplementary Information

Cooperation and competition of hydrogen and halogen bonds in 2D self-assembled nanostructures based on bromine substituted coumarins

Bao Zhaac, Jinxing Li,b Juntian Wub, Xinrui Miao, *b and Min Zhang,*a

*a School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, People’s Republic of China.
b College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China.
c Shenzhen China Star Optoelectronics Technology Co., Ltd, Shenzhen 518132, People’s Republic of China.

Corresponding authors: Xinrui Miao (msxrmiao@scut.edu.cn)
Min Zhang (zhangm@ece.pku.edu.cn)
Experimental Section

1. General Information

1H spectra were recorded out on a Bruker AV-600 MHz NMR spectrometer.

2. Synthesis and Characterization of Co16 (3a), 6-Br-Co16 (3b) and 6,8-Br-Co16 (3c)

2.1. Scheme S1.

![Chemical Structure](image)

Compound 3a: hexadecyl ester coumarin-3-carboxylate (Co16); **Compound 3b**: hexadecyl ester-6-bromo-coumarin-3-carboxylate (6-Br-Co16); **Compound 3c**: hexadecyl ester-6,8-dibromo-coumarin-3-carboxylate ($6,8$-Br-Co16) were synthesized as previously reported in the literature.1

Compound 3a The coumarin-3-carboxylic acid (1.90 g 10 mmol) was dissolved in SOCl$_2$ (20 mL) and the reaction mixture was stirred at 80 °C for 6 h. The SOCl$_2$ was removed under reduced pressure. n-Hexadecanol (4.85 g, 20 mmol) and THF (30 mL) were added to the mixture, which was stirred at 100 °C for another 2 h. The solvent was removed by vacuum. The crude product was subjected to column chromatography (Silical gel 10% EA/PE) to give 3a as a solid.

Data for 3a. 1H NMR (600 MHz, CDCl$_3$, ppm): δ 8.51 (1H, m), 7.61 (2H, m), 7.35 (2H, m), 4.35 (2H, m), 1.78 (2H, m), 1.26 (26H, m), 0.88 (3H, m).

Compound 3b The 6-bromo coumarin-3-carboxylic acid (2.69 g 10 mmol) was dissolved in SOCl$_2$ (20 mL) and the reaction mixture was stirred at 80 °C for 6 h. The SOCl$_2$ was removed under reduced pressure. n-Hexadecanol (4.85 g, 20 mmol) and THF (30 mL)
were added to the mixture, which was stirred at 100 ºC for another 2 h. The solvent was removed by vacuum. The crude product was subjected to column chromatography (Silical gel 10% EA/PE) to give 3b as a solid.

Data for 3b. 1H NMR (600 MHz, CDCl$_3$, ppm): δ 8.41 (1H, m), 7.75 (1H, m), 7.71 (1H, m), 7.21 (1H, m), 4.35 (2H, m), 1.77 (2H, m), 1.26 (26H, m), 0.88 (3H, m).

Compound 3c The 6,8-dibromo coumarin-3-carboxylic acid (3.47 g 10 mmol) was dissolved in SOCl$_2$ (20 mL) and the reaction mixture was stirred at 80 ºC for 6 h. The SOCl$_2$ was removed under reduced pressure. n-Hexadecanol (4.85 g, 20 mmol) and THF (30 mL) were added to the mixture, which was stirred at 100 ºC for another 2 h. The solvent was removed by vacuum. The crude product was subjected to column chromatography (Silical gel 10% EA/PE) to give 3c as a solid.

Data for 3c. 1H NMR (600 MHz, CDCl$_3$, ppm): δ 8.36 (1H, m), 7.98 (1H, m), 7.69 (1H, m), 4.35 (2H, m), 1.76 (2H, m), 1.25 (26H, m), 0.88 (3H, m).

Notes and references

3. Electrostatic potential (ESP) maps of 6-Br-Co16 and 6,8-Br-Co16.

Fig. S1 (a) Electrostatic potential (ESP) maps of 6-Br-Co16 under vacuum, Inset images (b,c) show the ESP maps of Br atom. The map color scales from −4 (blue) to 4 (red) kcal/mol. The alkyl chains were replaced by methyl substituents.

Fig. S2 (a) Electrostatic potential (ESP) maps of 6,8-Br-Co16 under vacuum, Inset images (b,c) show the ESP maps of Br atoms. The map color scales from −4 (blue) to 4 (red) kcal/mol. The alkyl chains were replaced by methyl substituents.