Supporting Information

Cross-Dehydrogenative Coupling of Acetanilides with Aromatic Aldehydes
Ebrahim Kianmehr,* Hadi Afaridoun

School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.

Contents

1. General information 2S
2. Typical procedure for the synthesis of N-Acetyl-N-phenylbenzamides 2S
3. Spectral data 3S-7S
4. Copies of 1H and 13C NMR spectra 8S-24S
1. General information

Solvents, nickel catalyst, TBHP oxidant, aromatic aldehyde and aniline derivatives were purchased from Merck and Sigma. Other reagents were purchased from commercial distributors and used without further purification. Acetanilide derivatives were synthesized in accordance with the literatures. Analytical thin layer chromatography (TLC) was performed with pre-coated silica gel 60 F254 plates. The products were purified by flash column chromatography on silica gel (0.063–0.200 mm; Merck). 1H and 13C NMR Spectra were recorded with a Bruker 500 Advance instrument in CDCl$_3$ and DMSO-d6. Mass spectrometry was obtained with an Agilent 5975C VL MSD (Ion source: EI+, 70 eV, 230 °C). Gc-MS analysis was performed on an Agilent Gc 7890A (Column: Rtx 5 MS, length=30m, I.D=0.250 mm, Film thickness=25 µm) and 5975C VL MSD (Ion source: EI+, 70 eV, 230 °C). Temperature program: initial temperature=40 ºC, initial time=2 min, program rate=5 ºC/min, final temperature=270 ºC, final time=2 min, split ratio=50 mL/min and flow rate=1 mL/min. Conditions: 1. injection port temperature: 230 °C, 2. ion source temperature: 230 °C, 3. carrier gas: He 99.999%, 4. sample volume: 0.5 µL

2. Typical procedure for the synthesis of N-Acetyl-N-phenylbenzamides.

A 10 mL microwave vial was charged with acetanilide derivatives (1 equiv, 0.5 mmol), benzaldehyde derivatives (3 equiv, 1.5 mmol), KBr (1.0 equiv., 60 mg), TBHP (70% aq. solution, 1.5 mmol, 193 mg) and DCM (2.0 mL). The vial was then stirred at room temperature, for 12 h. After this time the reaction mixture was diluted with water (5 mL) and the aqueous phase was extracted with dichloromethane (3 × 5 mL). The organic extracts were combined and washed with saturated solution of NaHCO$_3$ (3 × 5 mL). Next, the organic phase was dried over sodium sulfate and filtered. Concentration of the solution by rotary evaporation under reduced pressure gave a residue which was purified by using flash column chromatography (n-hexane: EtOAc, 10:1) to yield the desired products.
3. Spectral data

3.1. N-Acetyl-N-phenylbenzamide (3a):
The general procedure was followed by using acetanilide (0.5 mmol, 68 mg), benzaldehyde (1.5 mmol, 160 mg), TBHP (1.5 mmol, 193 mg), KBr (1.0 equiv., 60 mg), and DCM (2.0 mL). Purification by flash column chromatography (silica gel, n-hexane : EtOAc, 10:1) gave final product 3a (110 mg, 92 % yield) as a colorless oil. 1H NMR (500 MHz, DMSO-d$_6$): δ 7.96 (d, J = 7.1 Hz, 2H), 7.78 (d, J = 8.2 Hz, 2H), 7.61 – 7.52 (m, 3H), 7.35 (t, J = 7.8 Hz, 2H), 7.10 (t, J = 7.4 Hz, 1H), 2.50 (s, 3H). 13C NMR (126 MHz, DMSO-d$_6$): δ 173.3, 173.1, 139.6, 135.5, 132.0, 129.3, 129.1, 128.8, 128.1, 25.8. MS (EI): m/z (%) = 239 (5) [M]$^+$, 197 (99), 167 (70), 149 (99), 105 (100), 84 (44), 77 (98), 71 (56), 66 (40), 57 (80), 55 (100), 43 (72), 41 (54). C$_{15}$H$_{13}$NO$_2$ (239.27): calcd. C 75.30, H 5.48, N 5.85; found C 75.64, H 5.51, N 5.83

3.2. N-Acetyl-4-methyl-N-phenylbenzamide (3b):
The general procedure was followed by using acetanilide (0.5 mmol, 68 mg), 4-methylbenzaldehyde (1.5 mmol, 180 mg), TBHP (1.5 mmol, 193 mg), KBr (1.0 equiv., 60 mg), and DCM (2.0 mL). Purification by flash column chromatography (silica gel, n-hexane : EtOAc, 10:1) gave final product 3b (116 mg, 92 % yield) as a yellow oil. 1H NMR (500 MHz, CDCl$_3$): δ 7.53 (d, J = 7.9 Hz, 2H), 7.33 (t, J = 7.6 Hz, 1H), 7.15 (d, J = 7.7 Hz, 2H), 7.10 (d, J = 8.1 Hz, 2H), 2.41 (s, 3H), 2.32 (s, 3H). 13C NMR (126 MHz, CDCl$_3$): δ 173.5, 172.8, 143.0, 139.3, 131.8, 129.6, 129.3, 129.0, 128.4, 128.0, 25.5, 21.6. MS (EI): m/z (%) = 253(4) [M]$^+$, 211(70), 177(20), 133(57), 119(25), 89(89), 87(47), 73(22), 45(100), 43(21). C$_{16}$H$_{15}$NO$_2$ (253.30): calcd. C 75.87, H 5.97, N 5.53; found C 75.51, H 5.94, N 5.59

3.3. N-Acetyl-4-methyl-N-(p-tolyl)benzamide (3c):
The general procedure was followed by using 4-methylacetanilide (0.5 mmol, 75 mg), 4-methylbenzaldehyde (1.5 mmol, 180 mg), TBHP (1.5 mmol, 193 mg), KBr (1.0 equiv., 60 mg), and DCM (2.0 mL). Purification by flash column chromatography (silica gel, n-hexane : EtOAc, 10:1) gave final product 3c (130 mg, 97 % yield) as a brown oil. 1H NMR (500 MHz, CDCl$_3$): δ 7.53 (d, J = 8.1 Hz, 2H), 7.14-7.10 (m, 4H), 7.02 (d, J = 8.3 Hz, 2H), 2.38 (s, 3H), 2.32 (s, 3H), 2.30 (s, 3H). 13C-NMR (126 MHz, CDCl$_3$): δ 173.6, 172.9, 142.9, 137.9, 131.9, 130.0, 129.5, 129.4, 129.0, 128.2, 25.5, 21.6, 21.1. MS (EI): m/z (%) = 267(5) [M]$^+$, 177(20), 133(57), 119(25), 89(89), 87(47), 73(22), 45(100), 43(21). C$_{17}$H$_{17}$NO$_2$ (267.32): calcd. C 76.38, H 6.41, N 5.24; found C 76.12, H 6.45, N 5.28

3.4. N-Acetyl-N-(4-methoxyphenyl)-4-methylbenzamide (3d):
The general procedure was followed by using 4-methoxacetanilide (0.5 mmol, 83 mg), 4-methylbenzaldehyde (1.5 mmol, 180 mg), TBHP (1.5 mmol, 193 mg), KBr (1.0 equiv., 60 mg), and DCM (2.0 mL). Purification by flash column chromatography (silica gel, n-hexane :
EtOAc, 10:1) gave final product 3d (124 mg, 88 % yield) as a brown oil. 1H NMR (500 MHz, CDCl$_3$): δ 7.52 (d, J = 8.3 Hz, 2H), 7.11 (d, J = 7.9 Hz, 2H), 7.06 (d, J = 8.9 Hz, 2H), 6.84 (d, J = 8.9 Hz, 2H), 3.76 (s, 3H), 2.39 (s, 3H), 2.32 (s, 3H). 13C NMR (126 MHz, CDCl$_3$): δ 173.8, 172.9, 159.0, 142.8, 132.0, 129.5, 129.4, 129.0, 114.6, 55.4, 25.5, 21.6. MS (EI): m/z (%) = 283(12) [M$^+$], 241(43), 119(100), 91(55), 65(17), 43(19). C$_{17}$H$_{17}$NO$_3$ (283.32): calcd. C 72.07, H 6.05, N 4.94; found C 72.41, H 6.02, N 4.98

3.5. N-Acetyl-N-(4-bromophenyl)-4-methylbenzamide (3e):
The general procedure was followed by using 4-bromoacetanilide (0.5 mmol, 106 mg), 4-methylbenzaldehyde (1.5 mmol, 180 mg), TBHP (1.5 mmol, 193 mg), KBr (1.0 equiv., 60 mg), and DCM (2.0 mL). Purification by flash column chromatography (silica gel, n-hexane : EtOAc, 10:1) gave final product 3e (129 mg, 78 % yield) as a colorless oil. 1H NMR (500 MHz, CDCl$_3$): δ 7.50 (d, J = 7.8 Hz, 2H), 7.44 (d, J = 8.2 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.4 Hz, 2H), 2.42 (s, 3H), 2.33 (s, 3H). 13C NMR (125 MHz, CDCl$_3$): δ 173.2, 172.4, 143.4, 138.3, 132.5, 131.9, 129.9, 129.7, 129.2, 127.1, 25.5, 21.6. MS (EI): m/z (%) =334(3) [M+2], 332(3) [M$^+$], 291(18), 289(18), 120(15), 119(100), 91(52), 65(18), 43(19). C$_{16}$H$_{14}$BrNO$_2$ (332.19): calcd. C 57.85, H 4.25, N 4.22; found C 57.49, H 4.21, N 4.24

3.6. N-Acetyl-N-(4-chlorophenyl)-4-methylbenzamide (3f):
The general procedure was followed by using 4-chloroacetanilide (0.5 mmol, 85 mg), 4-methylbenzaldehyde (1.5 mmol, 180 mg), TBHP (1.5 mmol, 193 mg), KBr (1.0 equiv., 60 mg), and DCM (2.0 mL). Purification by flash column chromatography (silica gel, n-hexane : EtOAc, 10:1) gave final product 3f (96 mg, 67 % yield) as a colorless oil. 1H NMR (500 MHz, CDCl$_3$): δ 7.50 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.8 Hz, 2H), 7.12 (d, J = 8.9 Hz, 2H), 7.07 (d, J = 8.6 Hz, 2H), 2.42 (s, 3H), 2.33 (s, 3H). 13C NMR (125 MHz, CDCl$_3$): δ 173.3, 172.5, 143.4, 137.8, 133.8, 131.4, 129.5, 129.4, 129.2, 129.0, 25.5, 21.6. MS (EI): m/z (%) = 289(1) [M+2], 287(3) [M$^+$], 247(18), 245(53), 120(30), 119(100), 91(92), 65(46), 63(20), 43(32). C$_{16}$H$_{14}$ClNO$_2$ (287.74): calcd. C 66.79, H 4.90, N 4.87; found C 66.38, H 4.86, N 4.90

3.7. N-Acetyl-4-chloro-N-phenylbenzamide (3g):
The general procedure was followed by using acetanilide (0.5 mmol, 68 mg), 4-chlorobenzaldehyde (1.5 mmol, 210 mg), TBHP (1.5 mmol, 193 mg), KBr (1.0 equiv., 60 mg), and DCM (2.0 mL). Purification by flash column chromatography (silica gel, n-hexane : EtOAc, 10:1) gave final product 3g (99 mg, 73 % yield) as a colorless oil. 1H NMR (500 MHz, DMSO-d$_6$): δ 7.66 (d, J = 8.5 Hz, 2H), 7.44 (d, J = 8.5 Hz, 2H), 7.40 – 7.37 (m, 2H), 7.34-7.30 (m, 3H), 2.27 (s, 3H). 13C NMR (125 MHz, DMSO-d$_6$) δ 173.3, 172.0, 139.5, 136.9, 134.6, 131.0, 129.7, 129.4, 128.8, 128.6, 128.6, 25.8. MS (EI): m/z (%) = 275(3) [M+2], 273(9) [M$^+$], 233(35), 231(86), 141(66), 139(100), 113(23), 111(67), 77(17), 75(37), 43(76). C$_{15}$H$_{12}$ClNO$_2$ (273.71): calcd. C 65.82, H 4.42, N 5.12; found C 65.59, H 4.37, N 5.09

3.8. N-Acetyl-4-chloro-N-(2-chlorophenyl)benzamide (3h):
The general procedure was followed by using 2-chloroacetanilide (0.5 mmol, 85 mg), 4-chlorobenzaldehyde (1.5 mmol, 210 mg), TBHP (1.5 mmol, 193 mg), KBr (1.0 equiv., 60 mg), and DCM (2.0 mL). Purification by flash column chromatography (silica gel, n-hexane : EtOAc, 10:1) gave final product 3h (95 mg, 62 % yield) as a yellow oil. 1H NMR (500 MHz, DMSO-d$_6$): δ 8.26 (d, J = 8.1 Hz, 2H), 8.04-8.00 (m, 3H), 7.81 (d, J = 8.0 Hz, 1H), 7.64 (t, J = 8.1 Hz, 1H), 7.50 (t, J = 7.7 Hz, 1H), 2.43 (s, 3H). 13C NMR (126 MHz, DMSO-d$_6$): δ 173.2, 171.1, 141.9, 137.5, 133.6, 131.9, 131.8, 131.2, 129.8, 128.7, 128.6, 25.8. MS (EI): m/z (%) = 312 (1) [M+4], 310 (5) [M+2], 298 (9) [M], 269(13), 267(51), 265(85), 141(68), 139(100), 113(23), 111(73), 43(55). C$_{15}$H$_{11}$Cl$_2$NO$_2$ (308.16): calcd. C 58.46, H 3.60, N 4.55; found C 58.72, H 3.63, N 4.59.

3.9. N-Acetyl-N-(2-chloro-5-methylphenyl)-4-methylbenzamide (3i):

The general procedure was followed by using 2-chloro-5-methylacetanilide (0.5 mmol, 92 mg), 4-methylbenzaldehyde (1.5 mmol, 180 mg), TBHP (1.5 mmol, 193 mg), KBr (1.0 equiv., 60 mg), and DCM (2.0 mL). Purification by flash column chromatography (silica gel, n-hexane : EtOAc, 10:1) gave final product 3i (117 mg, 78 % yield) as a brown oil. 1H NMR (500 MHz, CDCl$_3$): δ 7.50 (d, J = 7.9 Hz, 2H), 7.22-7.11 (m, 4H), 7.11 (s, 1H), 2.35 (s, 6H), 2.22 (s, 3H). 13C NMR (126 MHz, CDCl$_3$): δ 173.7, 172.9, 142.8, 136.0, 132.3, 131.5, 130.3, 129.3, 129.0, 128.8, 127.6, 25.7, 21.7, 18.2. MS (EI): m/z (%) = 303(12) [M+2], 301(40) [M]+, 119(100), 91(90), 89(35), 65(78), 63(25), 43(98). C$_{17}$H$_{16}$ClNO$_2$ (301.77): calcd. C 67.66, H 5.34, N 4.68; found C 67.93, H 5.37, N 4.67.

3.10. N-Acetyl-3,4-dimethoxy-N-phenylbenzamide (3j):

The general procedure was followed by using acetanilide (0.5 mmol, 68 mg), 3,4-dimethoxybenzaldehyde (1.5 mmol, 250 mg), TBHP (1.5 mmol, 193 mg), KBr (1.0 equiv., 60 mg), and DCM (2.0 mL). Purification by flash column chromatography (silica gel, n-hexane : EtOAc, 10:1) gave final product 3j (124 mg, 83 % yield) as a brown oil. 1H NMR (500 MHz, DMSO-d$_6$): δ 7.56 (d, J = 7.7 Hz, 3H), 7.39 (s, 1H), 7.28 (t, J = 7.4 Hz, 2H), 7.18 (d, J = 8.2 Hz, 1H), 7.01 (t, J = 7.4, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 2.33 (s, 3H). 13C NMR (126 MHz, DMSO-d$_6$): δ 172.3, 171.1, 155.6, 150.6, 140.7, 131.0, 130.1, 127.5, 124.3, 120.4, 112.7, 110.8, 57.3, 56.9, 25.4. MS (EI): m/z (%) = 299(10) [M]+, 257(55), 165(100), 137(65), 65(22), 43(33). C$_{17}$H$_{17}$NO$_4$ (299.32): calcd. C 68.22, H 5.72, N 4.68; found C 68.36, H 5.68, N 4.71.

3.11. N-Acetyl-N-(2-chlorophenyl)benzamide (3k):

The general procedure was followed by using 2-chloroacetanilide (0.5 mmol, 85 mg), benaldehyde (1.5 mmol, 160 mg), TBHP (1.5 mmol, 193 mg), KBr (1.0 equiv., 60 mg), and DCM (2.0 mL). Purification by flash column chromatography (silica gel, n-hexane : EtOAc, 10:1) gave final product 3k (100 mg, 73 % yield) as a brown oil. 1H NMR (500 MHz, DMSO-d$_6$): δ 7.96 (d, J = 8.7 Hz, 1H), 7.63 (d, J = 8.7 Hz, 2H), 7.51 – 7.46 (m, 2H), 7.40-7.36 (m, 4H), 2.31 (s, 3H). 13C NMR (126 MHz, DMSO-d$_6$): δ 173.0, 172.1, 137.2, 135.4, 133.3, 132.2, 130.8, 130.5, 129.7, 129.0, 128.7, 128.6, 25.7. MS (EI): m/z (%) = 275(2) [M+2], 273(5) [M]+, 271(10), 269(35), 267(51), 265(85), 141(68), 139(100), 113(23), 111(73), 43(55).
The general procedure was followed by using acetanilide (0.5 mmol, 68 mg), 2-chloro benzaldehyde (1.5 mmol, 210 mg), TBHP (1.5 mmol, 193 mg), KBr (1.0 equiv., 60 mg), and DCM (2.0 mL). Purification by flash column chromatography (silica gel, n-hexane : EtOAc, 10:1) gave final product 3l (99 mg, 73 % yield) as a colorless oil. 1H NMR (500 MHz, DMSO-d6): δ 8.20 (d, J = 7.6 Hz, 1H), 8.03 (t, J = 7.1 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.90 – 7.85 (m, 3H), 7.60 (t, J = 7.8 Hz, 2H), 7.34 (t, J = 7.2 Hz, 1H), 2.36 (s, 3H). 13C NMR (126 MHz, DMSO-d6): δ 171.3, 170.1, 141.1, 138.1, 137.6, 133.9, 132.6, 131.5, 130.4, 129.7, 128.6, 127.8, 25.8. MS (EI): m/z (%) = 275(5) [M+2], 273(15) [M]+, 233(33), 231(82), 141(46), 139(100), 113(20), 111(58), 43(53). C$_{15}$H$_{12}$ClNO$_2$ (273.71): calcd. C 65.82, H 4.42, N 5.12; found C 65.66, H 4.37, N 5.18.

3.13. N-Acetyl-2-methoxy-N-phenylbenzamide (3m):
The general procedure was followed by using acetanilide (0.5 mmol, 68 mg), 2-methoxybenzaldehyde (1.5 mmol, 204 mg), TBHP (1.5 mmol, 193 mg), KBr (1.0 equiv., 60 mg), and DCM (2.0 mL). Purification by flash column chromatography (silica gel, n-hexane : EtOAc, 10:1) gave final product 3m (105 mg, 78 % yield) as a brown oil. 1H NMR (500 MHz, DMSO-d6): δ = 8.02 – 7.96 (m, 2H), 7.89 (d, J = 8.2 Hz, 2H), 7.39 (t, J = 7.4 Hz, 1H), 7.33 (t, J = 7.4 Hz, 1H), 4.23 (s, 3H), 2.35 (s, 3H). 13C NMR (126 MHz, DMSO-d6): δ 171.5, 169.9, 163.1, 141.0, 138.1, 130.2, 129.3, 125.7, 124.6, 122.2, 120.6, 114.3, 57.5, 25.6. MS (EI): m/z (%) = 269(12) [M$^+$], 226(72), 135(100), 107(85), 65(51), 43(73). C$_{16}$H$_{15}$NO$_3$ (269.30): calcd. C 71.36, H 5.61, N 5.20; found C 71.58, H 5.57, N 5.23.

The general procedure was followed by using acetanilide (0.5 mmol, 68 mg), 3-chlorobenzaldehyde (1.5 mmol, 210 mg), TBHP (1.5 mmol, 193 mg), KBr (1.0 equiv., 60 mg), and DCM (2.0 mL). Purification by flash column chromatography (silica gel, n-hexane : EtOAc, 10:1) gave final product 3n (98 mg, 72 % yield) as a colorless oil. 1H NMR (500 MHz, DMSO-d6) δ = 7.71 (s, 1H), 7.59 (d, J = 7.8 Hz, 1H), 7.50 (d, J = 7.9 Hz, 1H), 7.41 – 7.30 (m, 6H), 2.29 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ = 173.3, 171.5, 139.4, 138.0, 133.4, 131.7, 130.5, 129.7, 129.5, 128.7, 128.6, 127.5, 25.9. MS (EI): m/z (%) = 275(4) [M$^+$], 273(13) [M$^+$], 233(69), 231(100), 141(88), 139(100), 113(34), 111(89), 86(76), 85(97), 84(89), 68(21), 66(71), 43(42). C$_{15}$H$_{12}$ClNO$_2$ (273.71): calcd. C 65.82, H 4.42, N 5.12; found C 65.39, H 4.45, N 5.17.

3.15. N-Acetyl-N-phenylfuran-2-carboxamide (3o):
The general procedure was followed by using acetanilide (0.5 mmol, 68 mg), furfuraldehyde (1.5 mmol, 144 mg), TBHP (1.5 mmol, 193 mg), KBr (1.0 equiv., 60 mg), and DCM (2.0 mL).
Purification by flash column chromatography (silica gel, n-hexane : EtOAc, 10:1) gave final product **3o** (86 mg, 75 % yield) as a dark brown oil. 1H NMR (500 MHz, DMSO-d$_6$) δ 8.05 – 8.04 (m, 1H), 7.60 (dt, J=8.6, 1.4 Hz, 2H), 7.49 – 7.48 (m, 1H), 7.28 – 7.24 (m, 2H), 7.01 – 6.98 (m, 1H), 6.73 – 6.72 (m, 1H), 2.35 (s, 3H). 13C NMR (126 MHz, DMSO-d$_6$) δ 173.5, 171.8, 153.0, 149.5, 139.8, 129.0, 123.4, 123.2, 119.5, 113.2, 24.3. MS (EI): m/z (%) = 229(6) [M+], 187(70), 139(43), 95(100), 77(100), 67(33), 43(25). C$_{13}$H$_{11}$NO$_3$ (229.23): calcd. C 68.11, H 4.84, N 6.11; found C 68.41, H 4.81, N 6.17

3.16. **N-Acetyl-N-(p-tolyl)furan-2-carboxamide (3p):**

The general procedure was followed by using 4-methylacetanilide (0.5 mmol, 75 mg), furfuraldehyde (1.5 mmol, 144 mg), TBHP (1.5 mmol, 193 mg), KBr (1.0 equiv., 60 mg), and DCM (2.0 mL). Purification by flash column chromatography (silica gel, n-hexane : EtOAc, 10:1) gave final product **3p** (100 mg, 82 % yield) as a dark brown oil. 1H NMR (500 MHz, DMSO-d$_6$) δ 8.06 (d, J = 1.8 Hz, 1H), 7.50 – 7.47 (m, 3H), 7.06 (d, J = 8.0 Hz, 2H), 6.74 – 6.73 (m, 1H), 2.41 (s, 3H), 2.23 (s, 3H). 13C NMR (126 MHz, DMSO-d$_6$) δ 173.5, 172.3, 153.0, 149.5, 137.3, 132.3, 129.4, 123.3, 119.5, 113.3, 24.3, 20.8. MS (EI): m/z (%) = 243(11) [M+], 153(20), 133(62), 95(82), 87(45), 45(100), 43(22). C$_{14}$H$_{13}$NO$_3$ (243.26): calcd. C 69.12, H 5.39, N 5.76; found C 69.53, H 5.34, N 5.84

3.17. **N-Acetyl-N-(p-tolyl)picolinamide (3q):**

The general procedure was followed by using 4-methylacetanilide (0.5 mmol, 75 mg), picolinaldehyde (1.5 mmol, 160 mg), TBHP (1.5 mmol, 193 mg), KBr (1.0 equiv., 60 mg), and DCM (2.0 mL). Purification by flash column chromatography (silica gel, n-hexane : EtOAc, 10:1) gave final product **3q** (105 mg, 83 % yield) as a brown oil. 1H NMR (500 MHz, DMSO-d$_6$) δ 8.80 – 8.79 (m, 1H), 8.00 (td, J = 7.6, 1.5 Hz, 1H), 7.91 (dd, J = 7.8, 1.3 Hz, 1H), 7.67 – 7.64 (m, 1H), 7.48 (d, J = 8.2 Hz, 2H), 7.06 (d, J = 8.1 Hz, 2H), 2.41 (s, 3H), 2.23 (s, 3H). 13C NMR (126 MHz, DMSO-d$_6$) δ 171.3, 170.5, 152.8, 150.6, 138.0, 137.3, 132.2, 129.4, 128.8, 122.0, 119.5, 24.3, 20.8. MS (EI): m/z (%) = 254(5) [M+], 177(20), 164(23), 133(55), 107(100), 87(35), 45(44), 43(33). C$_{15}$H$_{14}$N$_2$O$_2$ (254.28): calcd. C 70.85, H 5.55, N 11.02; found C 70.39, H 5.45, N 11.17
1. 1H and 13C NMR spectra