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Catalyst preparation

Mn-Fe-coprecipitation catalysts

The Mn-Fe-coprecipitation monolith catalysts were obtained by “classical urea assist
method”, which was listed as following: 0.337g MnCl, * 4H,O, 0.229¢g
Fe(NOs3)s. * 9H,0 and 0.60g CO(NH,), were dissolved in 56 mL deionized water.
After stirring for 20 minutes, the homogeneous solution was transferred to a 100 mL
Teflon-lined stainless steel autoclave with the pretreated iron meshes, sealed and
maintained at 120 °C for 24 hours. Then, the products were cooled down to room
temperature naturally and washed by absolute ethanol and deionized water.
Subsequently, the sample was dried in a vacuum oven 60 °C for 12 hours. Finally, the
obtained products were calcined in air at 450 °C for 2 h with a ramping rate of 1 °C /
min.

Mn-Fe@ceramics catalysts

The Mn-Fe@ceramics catalysts were obtained by a impregnation method: 0.337g
MnCl,.4H,0, 0.229g Fe(NO3);.9H,0 and 0.60g CO(NH,), were dissolved in 56 mL
deionized water. After stirring for 20 minutes, the honeycomb ceramics were
transferred to a homogeneous phase. Then, the obtained honeycomb ceramics coated
with Mn-Fe mixture were dried in a vacuum oven 120 °C for 24 hours. Finally, the
products were calcined in air at 450 °C for 2 h with a ramping rate of 1 °C/min and
then cooled down to room temperature naturally. The products were donated as Mn—

Fe@ceramics catalysts.
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Catalyst Characterization

TG mass / %

Fig. S1 TG profiles of MnFe-MOF-74 precursors on Fe mesh in air flow with a ramp
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of 10 °C / min.

The decomposition process of the MnFe-MOF-74 precursor on Fe mesh presented
two different weight-loss steps, which was corresponded to the evaporation of crystal
water (20-250 °C) and the oxidation of the precursor (300-400°C), respectively.

According to the TGA curve, the MnFe-MOF-74 precursor was annealed to convert

into Mn-Fe-in situ catalysts at 450 °C for 2 h.
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Fig. S2 (A) TEM and (B) HR-TEM images of MnFe-MOF-74 precursors on Fe mesh.
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Fig. S3 SEM images of Mn-Fe-coprecipitation catalysts at (A) low magnification and

(B) high magnification.
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Fig. S4 XRD patterns of MnFe-MOF-74 precursors on Fe mesh.

We scraped the MnFe-MOF-74 power from Fe mesh to do the XRD test due to the

convenient test in XRD machine. Therefore, no peaks of Fe mesh were observed in

Fig. S4.
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Fig. S5 XRD patterns of Mn-Fe-coprecipitation catalysts.
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Fig. S6 Plots of N, selectivity versus temperature for Mn-Fe-in-situ and Mn-Fe-
coprecipitation catalysts. Reaction conditions: 500 ppm NO, 500 ppm NHj3, 5 vol %

O,, N, as the balance gas, GHSV: 10 000 h-'.
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Fig. S7 Plots of NO conversion versus temperature for Mn-Fe-in-situ catalysts with

different hydrothermal reaction time. Reaction conditions: 500 ppm NO, 500 ppm

NH3, 5 vol % O,, N, as the balance gas, GHSV: 10000 h-!.
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Fig. S8 Plots of NO conversion versus temperature of catalysts with different metal
reactants: Fe, Co and Ni. Reaction conditions: 500 ppm NO, 500 ppm NH;, 5 vol %

0,, N, as the balance gas, GHSV: 10 000 h-'.

S-11



—o—Mn-Fe-in-situ
—o— Mn-Fe-coprecipitation

0 1 —a— Mn-Fe@ceramics
100 150 200 250 300 350
Temperature / C

Fig. S9 Plots of NO conversion versus temperature of Mn-Fe-in-situ, Mn-Fe-
coprecipitation and Mn-Fe@ceramics monolith catalysts. Reaction conditions: 500

ppm NO, 500 ppm NHj3, 5 vol % O,, N, as the balance gas, GHSV: 10 000 h!.
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Fig. S10 NO oxidation versus temperature of Mn-Fe-in-situ and Mn-Fe-
coprecipitation monolith catalysts. Reaction conditions: 500 ppm NO, 5 vol % O,, N,

as the balance gas, GHSV: 10 000 h-'.

As shown in Fig. S10, the Mn-Fe-in-situ catalysts showed a better NO oxidation
capacity than Mn-Fe-coprecipitation catalysts, which resulted from the strong synergy
effect of the Mn-Fe active sites. The strong NO oxidation capacity was beneficial to

the formation of NO, species that enabled the “Fast-SCR” reaction.
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