SUPPORTING INFORMATION

Synthesis and characterization of biodegradable linear shape memory polyurethanes with high mechanical performance by incorporating novel long chain diisocyanates
Wei Yang, a,b Di Guan, a,b Juan Liu, a,b Yanfeng Luo, a,b and Yuanliang Wang, a,b

a Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing 400030, China

b Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing, 400030, China

*Corresponding author. Address: College of Bioengineering, Chongqing University (Campus A), Chongqing 400030, China. Fax: +86 23 65102507.

E-mail address: yfluo@cqu.edu.cn (Y.F. Luo); wyl@cqu.edu.cn (Y.L. Wang)
Fig. S1 The FT-IR spectra of HDI-ISO-HDI and HDI-ISO-HDI-ISO-HDI.
Fig. S2 GPC traces of ISO-PUs in THF.
A polarized optical microscope (POM) equipped with a camera (Mshot, China) was used to observe and record the phase separation of the samples. The samples were dissolved in trichloromethane at a concentration of 20 wt%, and then the solution was cast on clean, flat glass plates, dried at room temperature for 7 days, and finally observed by using POM without the polarizer turned on at room temperature.
Fig. S4 Shape memory procedure of ISO1-PU (A), ISO2-PU (B) and ISO3-PU (C) at 60 °C.
Fig. S5 Compressive stress-strain curves of ISO1-PU (A), ISO2-PU (B) and ISO3-PU (C) in PBS at 37 °C.
Fig. S6 Water uptake of ISO-PU as a function of immersing time in PBS at 37 °C.