Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

New Journal of Chemistry

Supporting Information

CHF₂CF₂OCHF₂: Conformational Analysis, Direct Dynamics Study of its Reaction with Cl Atoms and Atmospheric Fate

Bidisha Baidya, Makroni Lily, Dimpal Patgiri, Shemphang Hynniewta and Asit K. Chandra Centre for Advanced Studies in Chemistry, North - Eastern Hill University, Shillong, 793 022, India

Table S1. Structural parameters of the conformers generated at the M06-2X/6-311++G(d,p) level. Bond lengths and angles are given in Å and degrees respectively.

	CF1	CF2	CF3	CF4	CF5	CF6	CF7	CF8	CF9	CF10
С1-Н2	1.0910	1.0920	1.0919	1.0911	1.0912	1.0912	1.0897	1.0909	1.0918	1.0915
C1-F3	1.3430	1.3425	1.3443	1.3518	1.3441	1.3400	1.3459	1.3436	1.3437	1.3526
C1-F4	1.3446	1.3432	1.3437	1.3417	1.3445	1.3523	1.3457	1.3454	1.3440	1.3396
C1-C5	1.5304	1.5300	1.5313	1.5349	1.5320	1.5351	1.5375	1.5422	1.5376	1.5402
C5-F6	1.3453	1.3528	1.3446	1.3456	1.3438	1.3526	1.3291	1.3354	1.3432	1.3306
C5-F7	1.3477	1.3486	1.3426	1.3306	1.3356	1.3317	1.3414	1.3368	1.3386	1.3445
C5-O8	1.3618	1.3550	1.3675	1.3720	1.3744	1.3645	1.3849	1.3834	1.3744	1.3731
O8-C9	1.3893	1.3897	1.3825	1.3861	1.3834	1.3877	1.3724	1.3742	1.3796	1.3821
С9-Н10	1.0899	1.0902	1.0868	1.0890	1.0870	1.0892	1.0866	1.0867	1.0868	1.0909
C9-F11	1.3404	1.3392	1.3417	1.3332	1.3411	1.3342	1.3391	1.3379	1.3421	1.3268
C9-F12	1.3322	1.3321	1.3407	1.3442	1.3400	1.3401	1.3540	1.3515	1.3407	1.3515
C1-C5-O8	108.2	110.2	109.1	113.4	107.2	115.4	112.7	115.8	117.8	115.3
C5-O8-C9	116.5	116.4	119.7	118.7	119.6	118.7	120.3	121.9	122.4	119.5
H2-C1-C5-O8	58.2	-179.6	-178.6	53.6	-56.7	175.0	67.8	-46.6	169.7	70.8
C9-O8-C5-C1	-177.0	-176.4	-160.2	68.6	-160.2	66.2	-84.6	-49.5	53.2	-35.8
H10-C9-O8-	-25.3	-25.9	-163.2	22.0	-163.6	22.9	166.6	-169.3	166.2	71.7
C5										

System	$\Delta \mathbf{E_{rel}}$
CF1	0
CF2	1.55
CF3	4.60
CF4	5.06
CF5	5.19
CF6	5.98
CF7	8.28
CF8	12.60
CF9	12.60
CF10	16.65
TS12c	16.23
TS23a	12.17
TS34c	20.12
TS39b	27.86
TS47b	10.63
TS48b	18.90
TS96a	23.70
TS85a	23.70
TS10-7a	18.62
TS56c	22.97

Table S2. Relative energies (in kJ mol⁻¹) for all the conformers and transition states involved calculated at the M06-2X/6-311++G(d,p) level.

Structures, Imaginary frequency and Cartesian Coordinates of Transition states

TS12c

Imaginary frequency	69.67 <i>i</i>				
`	С	artesian Coordinat	es		
Serial No.	Atoms	X	Y	Z	
1	С	1.80937500	0.21042600	-0.40361200	
2	Н	2.21175900	-0.28483400	-1.28852000	
3	F	2.67786700	0.08583300	0.61333000	
4	F	1.63686700	1.51445900	-0.65793100	
5	С	0.45506400	-0.44679800	-0.00442200	
6	F	0.19589600	-1.44908900	-0.87862300	
7	F	0.54706800	-1.03271800	1.20364800	
8	0	-0.54017200	0.47440300	-0.02026900	
9	С	-1.82296500	-0.00660400	0.21694000	
10	Н	-1.82860500	-0.93497200	0.78795300	
11	F	-2.47251600	0.95103800	0.87714300	
12	F	-2.44191800	-0.19369700	-0.95653600	

TS 23a

Imaginary	76.42 <i>i</i>
frequency	

Cartesian Coordinates					
Serial No.	Atoms	X	Y	Z	
1	С	-1.85183600	-0.03473400	0.09151800	
2	Н	-2.51229900	0.71141900	0.53784200	
3	F	-1.97169200	-1.20093300	0.74667000	
4	F	-2.18479300	-0.22494900	-1.19738300	
5	С	-0.39687100	0.43869100	0.16674000	
6	F	-0.30365000	1.61826200	-0.48116600	
7	F	-0.09160500	0.66911100	1.45535500	
8	0	0.40254400	-0.50646800	-0.39190000	
9	С	1.77416000	-0.30499500	-0.53396500	
10	Н	2.03580900	-0.26146800	-1.58938700	
11	F	2.17449200	0.81340000	0.08363600	
12	F	2.38873900	-1.34066800	0.04188800	

TS 34c

Imaginary	66.82 <i>i</i>			
frequency				
	С	artesian Coordinat	tes	
Serial No.	Atoms	X	Y	Z
1	С	-1.69734300	-0.26969500	-0.47765500
2	Н	-1.57515700	-0.61455400	-1.50427500
3	F	-2.20396200	-1.26145400	0.27305300
4	F	-2.55463200	0.76353300	-0.44936300
5	C	-0.32517700	0.17498600	0.11587100
6	F	-0.38125600	1.44818100	0.52091100
7	F	-0.00128600	-0.56763600	1.17865900
8	0	0.60280700	0.03144300	-0.89593000

9	С	1.95204700	0.00163400	-0.58723300
10	Н	2.49918000	0.20866400	-1.50357700
11	F	2.25598000	0.90343300	0.35554300
12	F	2.29364100	-1.20685800	-0.11553700

TS 39b

Imaginary frequency	67.45 <i>i</i>			
		Cartesian Coordin	ates	
Serial No.	Atoms	X	Y	Z
1	C	-0.93434800	0.92794300	0.38576000
2	Н	-1.91741200	1.09508500	0.83011500
3	F	0.02148600	1.21560700	1.28570200
4	F	-0.79213600	1.72765300	-0.68053400

5	С	-0.84959300	-0.56531800	-0.01031200
6	F	-1.48468100	-1.24478600	0.96189600
7	F	-1.56949300	-0.71917400	-1.13371400
8	0	0.35802900	-1.19599800	-0.17605900
9	С	1.58034100	-0.59087700	-0.37072600
10	Н	2.20615400	-1.30158700	-0.90461400
11	F	1.45728000	0.54414600	-1.07338400
12	F	2.15294800	-0.28522500	0.80166100

TS 47b

Imaginary	49.95 <i>i</i>			
frequency				
	(Cartesian Coordinat	es	
Serial No.	Atoms	X	Y	Z
1	C	-1.49325300	-0.55648300	0.24972500
2	Н	-1.13922100	-1.38158400	0.87152400
3	F	-2.44430500	0.13396400	0.90321400
4	F	-2.01726500	-1.03324300	-0.89298200
5	C	-0.34066400	0.39398800	-0.08991900
6	F	-0.78360300	1.41964600	-0.81605900
7	F	0.16219900	0.87595200	1.05420200

8	0	0.60552300	-0.28884000	-0.83544700
9	C	1.88445500	-0.46945000	-0.36566400
10	Н	2.42426600	-1.03700900	-1.11906000
11	F	2.49786000	0.70043400	-0.13974800
12	F	1.87039800	-1.14997700	0.79873500

TS 48b

Imaginary frequency	51.24 <i>i</i>				
	(Cartesian Coordina	tes		
Serial No.	Atoms	X	Y	Z	
1	С	1.31066300	0.63883300	-0.33972500	
2	Н	1.32866700	0.88210100	-1.40360900	
3	F	0.81605600	1.67041100	0.36235500	
4	F	2.56278700	0.40128900	0.09447000	
5	С	0.46656900	-0.62447800	-0.07772900	
6	F	1.17071100	-1.67697000	-0.50265500	
7	F	0.24892700	-0.75896200	1.23163600	

8	0	-0.70972700	-0.67151100	-0.80895400
9	С	-1.86593000	-0.02285800	-0.43441500
10	Н	-2.61380300	-0.26699000	-1.18474400
11	F	-2.28460500	-0.40957800	0.77702500
12	F	-1.68108200	1.30803200	-0.38825400

TS 96a

Imaginary frequency	84.10 <i>i</i>				
		Cartesian Coordin	ates		
Serial No.	Atoms	X	Y	Z	
1	C	-1.35869400	0.67731500	0.32486500	
2	Н	-2.26317100	0.50109600	0.91019800	
3	F	-1.66962000	1.31616800	-0.81627000	
4	F	-0.50489400	1.44443000	1.02370300	
5	C	-0.67965700	-0.65248200	-0.03599900	
6	F	-0.46312600	-1.35255600	1.09126800	
7	F	-1.54290000	-1.34951100	-0.78438100	
8	0	0.45675100	-0.52367500	-0.78793700	

9	С	1.73139200	-0.32516600	-0.26555000
10	Н	2.34126000	-1.21152100	-0.43054200
11	F	2.26032600	0.71220100	-0.91985500
12	F	1.71017600	-0.02608500	1.03708400

TS 85a

Imaginary		83.08 <i>i</i>			
frequency					
		Cartesian Coordin	ates		
Serial No.	Atoms	X	Y	Z	
1	С	-1.22902400	0.66378300	-0.51690900	
2	Н	-1.30632900	0.66236400	-1.60566000	
3	F	-0.49209900	1.71383100	-0.11471200	
4	F	-2.45400300	0.76405900	0.02897500	
5	С	-0.58011000	-0.64054200	-0.03272900	
6	F	-0.62264500	-0.73183000	1.30009200	

7	F	-1.30044600	-1.65091700	-0.53756900
8	0	0.69309700	-0.80871900	-0.52422600
9	С	1.84560200	-0.31994600	0.08443500
10	Н	2.45088200	-1.14720600	0.45021000
11	F	2.52269600	0.34986900	-0.85532600
12	F	1.57892600	0.52552400	1.08303700

TS 10-7a

Imaginary frequency	63.52 <i>i</i>			
Cartesian Coordinates				
Serial No.	Atoms	X	Y	Z
1	С	-1.21692900	-0.66474300	0.28746600

2	Н	-0.91995000	-1.07559400	1.25006100
3	F	-0.95413300	-1.56109500	-0.69039800
4	F	-2.53402100	-0.41151800	0.29257100
5	С	-0.46169900	0.65104100	-0.03395700
6	F	-1.21415100	1.42173000	-0.81398800
7	F	-0.26692300	1.30319200	1.12799700
8	0	0.72085900	0.49449400	-0.71309200
9	С	1.69038600	-0.40183900	-0.30399000
10	Н	1.80583500	-1.20396100	-1.03024600
11	F	2.83685700	0.26657300	-0.17555400
12	F	1.38533700	-0.92812100	0.90246200

TS 56c

Imaginary frequency	63.16 <i>i</i>			
		Cartesian Coordin	ates	
Serial No.	Atoms	X	Y	Z
1	С	1.24360300	-0.60043100	-0.42075700
2	Н	0.62049000	-1.18188300	-1.09872200
3	F	1.68644500	-1.39021300	0.57182600
4	F	2.30615300	-0.12238400	-1.08909700
5	С	0.44144300	0.60025300	0.18695700

6	F	0.33761200	0.45581700	1.52050000
7	F	1.06804500	1.74350800	-0.05589800
8	0	-0.81595300	0.72102100	-0.37470000
9	С	-1.82296800	-0.06248800	0.15453200
10	Н	-1.99808900	0.11886500	1.21315800
11	F	-2.91151900	0.20361200	-0.55762500
12	F	-1.51642900	-1.37135800	-0.01650900

Table S3. M06-2X/6-311++G(d,p) optimized parameters of $CHF_2CF_2OCHF_2(CF1)$, transition states (TS A₁ and TS B₁) for hydrogen abstraction by Cl atom and $CHF_2CF_2OC \cdot F_2$ (Rad A₁), and C $\cdot F_2CF_2OCHF_2$ (Rad B₁) radicals. Bond lengths and angles are given in Å and degrees respectively.

Bond lengths (r)	CHF ₂ CF ₂ OCHF ₂	TS A ₁	TS B ₁	$CHF_2CF_2OC \bullet F_2$	•CF ₂ CF ₂ OCHF ₂
_	(CF1)			(Rad A_1)	(Rad B_1)
$C_1 - C_5 / C_1 - C_4$	1.5304	1.5321	1.5296	1.5321	1.5296
$C_{5} - O_{8} / C_{4} - O_{7}$	1.3618	1.3847	1.3530	1.3847	1.3530
$O_8 - C_9 / O_7 - C_8$	1.3893	1.3580	1.3959	1.3580	1.3959
C ₁ –H ₂	1.0910	1.0914	1.4285	1.0914	-
$C_1 - F_3 / C_1 - F_2$	1.3430	1.3428	1.3119	1.3428	1.3119
$C_1 - F_4 / C_1 - F_3$	1.3446	1.3424	1.3141	1.3424	1.3141
$C_5 - F_6 / C_4 - F_5$	1.3453	1.3326	1.3473	1.3326	1.3473
$C_5 - F_7 / C_4 - F_6$	1.3476	1.3369	1.3439	1.3369	1.3439
C_9-H_{10}/C_8-H_9	1.0899	1.4501	1.0903	-	1.0903
$C_9 - F_{11} / C_9 - F_{10} /$	1.3404	1.3106	1.3286	1.3106	1.3286
$C_8 - F_{10}$					
$C_9 - F_{12}/C_9 - F_{11}/$	1.3322	1.3176	1.3373	1.3176	1.3373
$C_8 - F_{11}$					
HCl	-	1.4272	1.4346	-	-
Bond Angle (°)					
$C_1C_5O_8/C_1C_4O_7$	108.2	107.1	108.0	107.1	108.0
C ₅ O ₈ C ₉ / C ₄ O ₇ C ₈	116.5	118.8	116.4	118.8	116.4
Dihedral Angle (°)					
$\begin{array}{c} C_{1}C_{5}O_{8}C_{9} / \\ C_{1}C_{4}O_{7}C_{8} \end{array}$	177.0	-163.4	-176.4	-163.4	-176.4

Table S4. M06-2X/6-311++G(d,p) optimized parameters of $CHF_2CF_2OCHF_2(CF2)$, transition states (TS A₂ and TS B₂) for hydrogen abstraction by Cl atom and $CHF_2CF_2OC \cdot F_2$ (Rad A₂), and

Bond lengths (r)	CHF ₂ CF ₂ OCHF ₂	TS A ₂	TS B ₂	$CHF_2CF_2OC \bullet F_2$	•CF ₂ CF ₂ OCHF ₂
	(CF2)			(Rad A_2)	(Rad B_2)
$C_1 - C_5 / C_1 - C_4$	1.5230	1.5311	1.5303	1.5304	1.5133
C ₅ -O ₈ /C ₄ -O ₇	1.3550	1.3783	1.3580	1.3676	1.3644
$O_8 - C_9 / O_7 - C_8$	1.3897	1.3574	1.3965	1.3629	1.3914
C ₁ –H ₂	1.0920	1.0919	1.4318	1.0919	-
$C_1 - F_3 / C_1 - F_2$	1.3432	1.3420	1.3121	1.3430	1.3127
$C_1 - F_4 / C_1 - F_3$	1.3425	1.3426	1.3125	1.3430	1.3132
$C_5 - F_6 / C_4 - F_5$	1.3486	1.3388	1.3440	1.3431	1.3479
$C_5 - F_7 / C_4 - F_6$	1.3528	1.3374	1.3404	1.3432	1.3442
C ₉ -H ₁₀ / C ₈ -H ₉	1.0902	1.4471	1.0903	-	1.0902
$C_9 - F_{11} / C_9 - F_{10} /$	1.3321	1.3096	1.3365	1.3110	1.3388
C ₈ -F ₁₀					
$C_9 - F_{12}/C_9 - F_{11}/$	1.3392	1.3186	1.3299	1.3183	1.3322
C ₈ -F ₁₁					
HCl		1.4296	1.4338		
Bond Angle (°)					
$C_1C_5O_8/C_1C_4O_7$	110.2	108.9	108.6	109.4	109.7
C5O8C9/C4O7C8	116.4	118.8	116.4	116.0	116.5
Dihedral Angle (°)					
$\overline{C_1C_5O_8C_9}$	176.4	163.3	-175.6	176.5	-175.7
$C_1C_4O_7C_8$					

C•F₂CF₂OCHF₂ (Rad B₂) radicals. Bond lengths and angles are given in Å and degrees respectively.

Table S5 Harmonic vibrational frequencies (cm⁻¹) and rotational constants (GHz, within brackets) calculated at M06-2X/6-311++G(d,p) level for $CHF_2CF_2OCHF_2(CF1) + Cl$ system

System	Frequencies (cm ⁻¹)
CHF ₂ CF ₂ OCHF ₂	37,57,79,132,232,261,318,376,446,488,586,587,597,682,810,904,1096,116
(CF1)	2,1180,1187,1197,1223,1268,1333,1390,1402,1447,1479,3150,3167
	[2.49156, 0.81885, 0.72938]
TS A ₁	727 <i>i</i> ,27,54,66,85,115,139,224,261,330,334,376,450, 505, 570, 592, 640,
	748, 826, 900, 905, 939,1131, 1184,1190,1208,1232,1266,1320,1361,
	1391,1470, 3147 [1.38325, 0.58272, 0.48083]
TS B ₁	809 <i>i</i> , 24, 34, 60, 70, 95, 130, 227, 246, 322, 335, 382, 437, 493, 578,
	608,642, 682, 855, 870, 889, 993,1087, 1165,1196, 1212,
	1241,1287,1332,1404,1415, 1449, 3164 [1.12895, 0.62174, 0.49291]

CR A ₁	25, 35, 50, 58, 75, 86, 129, 239, 263, 325, 373, 435, 485, 566, 590, 633, 667,
	809, 900, 1088, 1162, 1175, 1192, 1203, 1210, 1269, 1331, 1390, 1407,
	1447, 1477, 3148, 3165 [0.96105,0.68085,0.48052]
CR B ₁	16, 41, 59, 63, 76, 89, 132, 234, 262, 325, 372, 443, 482, 568, 591, 634,
	664, 810, 906, 1086, 1169, 1176, 1193, 1201, 1207, 1254, 1339, 1391, 1402,
	1445, 1476, 3154, 3169 [0.98921, 0.72286, 0.52164]
CP A ₁	20, 37, 46, 57, 76, 79, 127, 231, 243, 257, 326, 350, 374, 447, 488, 567, 597,
	627, 657, 810, 904, 1055, 1181, 1184, 1200, 1226, 1288, 1318, 1351, 1391,
	1473, 2980, 3147 [1.15873, 0.58117, 0.45532]

Table S6 Harmonic vibrational frequencies (cm^{-1}) and rotational constants (GHz, within brackets) calculated at M06-2X/6-311++G(d,p) level for CHF₂CF₂OCHF₂ (CF2) + Cl system

System	Frequencies (cm ⁻¹)		
CHF ₂ CF ₂ OCHF ₂	32, 59, 78, 129, 218, 245, 362, 370, 455, 507, 552, 589, 629, 667, 748, 935,		
(CF2)	1117, 1161, 1176, 1183, 1207, 1212, 1239, 1356, 1390, 1401, 1452, 1478,		
	3138, 3164 [2.04169, 0.86673, 0.83844]		
TS A ₂	746 <i>i</i> , 15, 58, 64, 79, 97, 136, 218, 234, 330, 363, 374, 477, 517, 558, 595,		
	637, 713, 777, 853, 918, 955, 1138, 1177, 1197, 1205, 1236, 1282, 1313,		
	1340, 1391, 1478, 3142, [1.35712, 0.57971, 0.51311]		
TS B ₂	791 <i>i</i> , 27, 39, 51, 69, 95, 134, 214, 241, 309, 363, 371, 457, 510, 570, 608,		
	639, 676, 815, 873, 898, 989, 1106, 1171, 1197, 1217, 1239, 1268, 1334,		
	1404, 1414, 1451, 3167, [1.70418, 0.47090, 0.45174]		
CR A ₂	29, 32, 47, 61, 74, 87, 130, 220, 244, 359, 369, 447, 506, 545, 587, 628,		
	666, 744, 932, 1107, 1130, 1169, 1179, 1205, 1211, 1224, 1359, 1392,		
	1405, 1457, 1478, 3140, 3166, [0.94895, 0.64760, 0.48133]		
CR B ₂	18, 34, 42, 63, 66, 90, 133, 218, 246, 361, 371, 456, 506, 551, 589, 629, 667,		
	747, 932, 1114, 1156, 1175, 1180, 1205, 1210, 1241, 1358, 1395, 1403,		
	1453, 1479, 3140, 3165 [1.16489, 0.53278, 0.45176]		
CP A ₂	19, 38, 44, 59, 70, 80, 127, 189, 222, 234, 344, 365, 371, 465, 511, 550, 586,		
	627, 670, 745, 922, 1084, 1176, 1182, 1206, 1216, 1275, 1321, 1361, 1393,		
	1478, 2981,3143 [1.57941, 0.42234, 0.40152]		

CR A₁

CR B₁

Fig. S1 Optimized structures of the pre- and post-reaction complexes at the M06-2X/6-311++G(d,p) level. Bond lengths are given in Å

Fig. S2 Classical potential energy curve (V_{MEP}), ground-state vibrationally adiabatic energy curve (V_a^G), and zero-point energy curve (ZPE) as function of s (amu)^{1/2} bohr at the M06-2X/6-311++G(d,p) level for reaction channel R2 via TS B₁ for CHF₂CF₂OCHF₂ (CF1) + Cl.

Fig. S3 (a) TST, CVT, and CVT/SCT rate coefficients of $CHF_2CF_2OCHF_2$ (CF1)+ Cl (b) TST, CVT, and CVT/SCT rate coefficients of $CHF_2CF_2OCHF_2$ (CF1)+ Cl.

Table S7 TST/SCT, CVT and CVT/SCT rate coefficient values (in cm³ molecule⁻¹ s⁻¹) for hydrogen abstraction reactions of CHF₂CF₂OCHF₂ with Cl atom as calculated using M06-2X/6-311++G(d,p) level and the available estimated results at 298 K.

Т	TST(CF1)	CVT(CF1)	CVT/SCT	TST(CF2)	CVT(CF2)	CVT/SCT
			(CF1)			(CF2)
200	8.42×10^{-19}	2.65×10^{-19}	1.46×10^{-17}	1.07×10^{-18}	8.89×10^{-19}	1.89×10^{-17}
298	1.27×10^{-16}	5.28×10^{-17}	4.19×10^{-16}	1.36×10^{-16}	1.16×10^{-16}	5.26×10^{-16}
300	1.37×10^{-16}	5.69×10 ⁻¹⁷	4.41×10^{-16}	1.46×10^{-16}	1.24×10^{-16}	5.53×10^{-16}
400	2.23×10^{-15}	1.02×10^{-15}	3.44×10^{-15}	2.16×10^{-15}	1.81×10^{-15}	4.32×10^{-15}
500	1.37×10^{-14}	6.51×10^{-15}	1.43×10^{-14}	1.26×10^{-14}	1.03×10^{-14}	1.81×10^{-14}
600	5.06×10^{-14}	2.43×10^{-14}	4.22×10^{-14}	4.45×10^{-14}	3.59×10^{-14}	5.27×10^{-14}
700	1.38×10^{-13}	6.63×10 ⁻¹⁴	9.88×10^{-14}	1.17×10^{-13}	9.32×10^{-14}	1.23×10^{-13}
800	3.05×10^{-13}	1.46×10^{-13}	1.98×10^{-13}	2.54×10^{-13}	1.99×10^{-13}	2.44×10^{-13}
900	5.88×10 ⁻¹³	2.81×10^{-13}	3.53×10 ⁻¹³	4.80×10^{-13}	3.71×10^{-13}	4.35×10^{-13}
1000	1.02×10^{-13}	4.85×10^{-13}	5.81×10 ⁻¹³	8.20×10^{-13}	6.27×10^{-13}	7.10×10^{-13}

Table S8 Cartesian coordinates (in Å) of different important species in the degradation path of $CHF_2CF_2OCHF_2$. Optimization was done at the M06-2X/6-311++G(d,p) level.

•OOCF₂CF₂OCHF₂

Atoms	X	Y	Z
С	2.16183500	0.15288700	0.11623300
0	0.84209900	0.28519000	-0.31718700
С	-0.09824600	-0.34995000	0.42328100
С	-1.45668500	-0.23300200	-0.31318800
Н	2.23312200	-0.05212800	1.18486100
F	2.74655000	-0.82989800	-0.57636300
F	2.77258200	1.29581600	-0.18333400
F	-0.18275400	0.16037100	1.66021400
F	0.17986900	-1.65770900	0.56939200
F	-1.45258300	-1.01627900	-1.37690500
F	-2.43013600	-0.59214100	0.51159300
0	-1.70928200	1.06217300	-0.81851000
0	-1.70485500	1.95152100	0.13767400

•OCF₂CF₂OCHF₂

Atoms	х	Y	Z
С	2.03521600	0.03699000	0.13763700
0	0.74832200	0.42606800	-0.23812200
С	0.27486300	-0.21577500	0.37405000
С	-1.61868900	0.25684200	-0.26895400
Н	2.07760100	-0.33425600	1.16215100
F	2.46987400	-0.90540300	-0.70509300
F	2.80440700	1.11212900	-0.00418000
F	-0.30154400	0.03933400	1.69277300
F	-0.19092100	-1.54436900	0.23737700
F	-1.65799500	-0.15881600	-1.54252000
F	-2.62677200	-0.34821800	0.37895200
0	-1.67345000	1.58818200	-0.15366900

• CF_2OCHF_2

Atoms	X	Y	Z
С	-1.27257300	-0.08679500	-0.38747000
0	0.03881700	-0.20611800	-0.79220900
С	0.97475800	-0.03954400	0.17758400
Н	-1.90346400	-0.19355600	-1.26547900
F	-1.56805100	-1.02956500	0.52190600
F	-1.47934100	1.10287200	0.20034500
F	1.50702600	1.16855800	0.17741900
F	1.91590200	-0.95291800	0.08504800

•OOCF₂OCHF₂

Atoms	X	Y	Z
C	1.40021200	0.20830000	0.19811500
0	0.32061800	0.03336000	-0.66610400
C	-0.83399100	-0.40312700	-0.11670100
Н	1.09256500	0.51011900	1.20055900
F	2.09844800	-0.93110900	0.26466200
F	2.16921800	1.13878400	-0.35723900
F	-0.68060000	-1.51246500	0.59636900
F	-1.69754100	-0.60056600	-1.08573000
0	-1.62507000	1.67380000	0.27696300
0	-1.38250200	0.51872100	0.83269000

•OCF₂OCHF₂

Atoms	Х	Y	Z
С	-1.25451800	-0.02129000	0.20495500
0	-0.13502800	-0.22952200	-0.60259500
С	1.08332200	-0.06355700	-0.00398100
Н	-1.01366600	-0.04084300	1.26744400
F	-1.79257700	1.15736500	-0.12177300
F	-2.13233600	-0.97592400	-0.09654400
F	1.15440100	1.07956600	0.69950200
F	1.99796500	-0.00347700	-0.96040200
0	1.25925000	-1.11645800	0.83255300

•OCF₂OCF₂

Atoms	Х	Y	Z
С	-0.95301700	-0.00000100	-0.00006800
0	0.00002300	-0.00035800	-1.01512000
С	0.95297800	-0.00000500	0.00012200
F	-1.72310600	1.06740000	0.00002900
F	-1.72361800	-1.06703600	-0.00004900
F	1.72310200	1.06753600	-0.00005800
F	1.72358400	-1.06718800	-0.00004600
0	0.00004900	-0.00043700	1.01521800

 COF_2

Atoms	Х	Y	Z
С	-0.14316500	0.00000400	0.00034700
F	0.62961300	1.05806900	-0.00007000
F	0.62955200	-1.05810400	-0.00007000
0	-1.30918700	0.00003600	-0.00010400