Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information

state for	complex 1a					
МО	Energy		Contribution (%)		Assignment	
	-	Ir	L	dipdtc	_	
L+10	0.80	38	47	15	$d^*(Ir) + \pi^*(L)$	
L+9	0.60	38	44	18	$d^*(Ir) + \pi^*(L)$	
L+8	0.42	1	99	0	$\pi^*(L)$	
L+7	0.31	1	98	1	$\pi^*(L)$	
L+6	0.08	9	84	7	$\pi^*(L)$	
L+5	-0.10	10	84	6	$\pi^*(L)$	
L+4	-0.69	4	2	94	$\pi^*(dipdtc)$	
L+3	-1.13	3	97	0	$\pi^*(L)$	
L+2	-1.23	3	94	3	$\pi^*(L)$	
L+1	-1.96	3	95	2	$\pi^*(L)$	
L	-2.10	3	96	1	$\pi^*(L)$	
HOMO–I	LUMO energy ga	ap (3.84 eV)				
Н	-5.94	40	49	11	$d(Ir)+\pi(L)$	
H-1	-6.14	30	12	58	$d(Ir)+\pi(dipdtc)$	
Н-2	-6.24	40	11	49	$d(Ir)+\pi(dipdtc)$	
Н-3	-6.48	1	36	63	π (L+dipdtc)	
H-4	-7.09	2	89	9	π (L)	
Н-5	-7.16	22	52	26	$d(Ir)+\pi(L+dipdtc)$	
Н-6	-7.35	17	71	12	π (L)	
H - 7	-7.36	1	95	4	π (L)	
H-8	-7.56	34	21	45	$d(Ir)+\pi(L+dipdtc)$	
Н-9	-7.72	21	37	42	$d(Ir)+\pi(L+dipdtc)$	
H-10	-8.14	3	96	1	$\pi(L)$	

Table S1 Frontier molecular orbital energies (eV) and compositions (%) in the ground

МО	Energy		Contribution	Assignment	
		Ir	L	dipdtc	_
L+10	0.39	19	71	10	$d^{*}(Ir) + \pi^{*}(L)$
L+9	0.32	17	74	9	$d^{*}(Ir) + \pi^{*}(tfmdq)$
L+8	0.21	2	98	0	π* (L)
L+7	0.16	2	97	1	π* (L)
L+6	-0.69	4	1	95	$\pi^*(dipdtc)$
L+5	-0.94	3	96	1	π* (L)
L+4	-1.04	2	97	1	π* (L)
L+3	-1.57	1	99	0	π* (L)
L+2	-1.60	1	99	0	π* (L)
L+1	-2.02	3	96	1	π* (L)
L	-2.10	2	97	1	π* (L)
HOMO-L	UMO energy g	gap (3.81 eV)			
Н	-5.91	35	57	8	$d(Ir)+\pi(L)$
H-1	-6.11	30	10	60	$d(Ir)+\pi(dipdtc)$
H-2	-6.24	38	14	48	$d(Ir)+\pi(dipdtc)$
Н-3	-6.40	1	54	45	π (L+dipdtc)
H-4	-6.78	2	76	22	π (L+dipdtc)
H-5	-6.79	2	94	4	$\pi(L)$
H-6	-6.86	1	93	6	$\pi(L)$
H - 7	-7.08	13	78	9	$\pi(L)$
H-8	-7.31	29	40	31	$d(Ir)+\pi(L+dipdtc)$
H-9	-7.39	13	65	22	π (L+dipdtc)
H-10	-7.73	26	37	37	$d(Ir)+\pi(L+dipdtc)$

Table S2 Frontier molecular orbital energies (eV) and compositions (%) in the groundstate for complex 1b

МО	Energy		Contribution	Assignment	
		Ir	L	dipdtc	—
L+10	0.70	28	60	12	$d^*(Ir) + \pi^*(L)$
L+9	0.58	11	84	5	$\pi^*(4tfmpq)$
L+8	0.01	10	83	7	π* (L)
L+7	-0.14	6	89	5	$\pi^*(L)$
L+6	-0.51	1	99	0	$\pi^*(L)$
L+5	-0.55	1	99	0	$\pi^*(L)$
L+4	-0.68	4	3	93	$\pi^*(dipdtc)$
L+3	-1.04	2	98	0	π* (L)
L+2	-1.11	3	93	4	π* (L)
L+1	-2.34	4	95	1	$\pi^*(L)$
L	-2.53	3	96	1	π* (L)
HOMO-L	UMO energy g	gap (3.39 eV)			
Н	-5.92	41	46	13	$d(Ir)+\pi(L)$
H-1	-6.12	31	21	48	$d(Ir)+\pi(L+dipdtc)$
H-2	-6.19	40	15	45	$d(Ir)+\pi(dipdtc)$
H-3	-6.42	1	37	62	π (L+dipdtc)
H-4	-6.84	0	90	10	$\pi(L)$
H-5	-6.87	9	68	23	π (L+dipdtc)
Н-6	-7.22	23	60	17	$d(Ir)+\pi(L)$
H-7	-7.32	3	88	9	$\pi(L)$
H-8	-7.49	23	40	37	$d(Ir)+\pi(L+dipdtc)$
Н-9	-7.61	2	96	2	$\pi(L)$
H-10	-7.67	4	91	5	π (L)

Table S3 Frontier molecular orbital energies (eV) and compositions (%) in the ground state for complex 1c

МО	Energy		Contribution	Assignment	
	-	Ir	L	czdtc	_
L+10	0.33	2	96	2	π*(L)
L+9	0.23	1	98	1	$\pi^*(L)$
L+8	-0.04	11	72	17	$\pi^*(L)$
L+7	-0.06	1	7	92	$\pi^*(czdtc)$
L+6	-0.21	12	80	8	$\pi^*(L)$
L+5	-0.97	0	1	99	$\pi^*(czdtc)$
L+4	-1.23	3	97	0	$\pi^*(L)$
L+3	-1.32	2	96	2	$\pi^*(L)$
L+2	-1.96	4	1	95	$\pi^*(czdtc)$
L+1	-2.07	3	96	1	$\pi^*(L)$
L	-2.19	3	95	2	$\pi^*(L)$
HOMO-LU	MO energy ga	p (3.91 eV)			
Н	-6.10	39	53	8	$d(Ir)+\pi(L)$
H-1	-6.28	15	4	81	π (czdtc)
Н-2	-6.43	31	10	59	$d(Ir)+\pi(czdtc)$
Н-3	-6.49	4	1	95	π (czdtc)
H-4	-6.77	3	45	52	π (L+czdtc)
H-5	-7.05	36	45	19	$d(Ir)+\pi(L)$
Н-6	-7.31	6	81	13	π (L)
H - 7	-7.32	17	61	22	π (L+czdtc)
H-8	-7.47	1	92	7	π (L)
Н-9	-7.51	9	25	66	π (L+czdtc)
H-10	-7.51	21	21	58	$d(Ir)+\pi(L+czdtc)$

Table S4 Frontier molecular orbital energies (eV) and compositions (%) in the ground state for complex 2a

МО	Energy		Contribution	Assignment	
		Ir	L	czdtc	_
L+10	0.14	4	95	1	π* (L)
L+9	0.10	4	93	3	π* (L)
L+8	-0.05	0	0	100	$\pi^*(czdtc)$
L+7	-0.96	0	2	98	$\pi^*(czdtc)$
L+6	-1.01	3	96	1	π* (L)
L+5	-1.11	3	94	3	π* (L)
L+4	-1.64	1	99	0	π* (L)
L+3	-1.66	1	98	1	π* (L)
L+2	-1.95	3	2	95	$\pi^*(czdtc)$
L+1	-2.11	3	96	1	π* (L)
L	-2.19	3	96	1	π* (L)
HOMO-LU	UMO energy	gap (3.86 eV)			
Н	-6.05	32	62	6	$d(Ir)+\pi(L)$
H-1	-6.28	15	4	81	π (czdtc)
H-2	-6.39	34	11	55	$d(Ir)+\pi(czdtc)$
Н-3	-6.48	2	1	97	π (czdtc)
H-4	-6.58	1	78	21	π (L+czdtc)
H-5	-6.86	1	96	3	π (L)
Н-6	-6.89	1	97	2	π (L)
H - 7	-7.01	13	48	39	π (L+czdtc)
H-8	-7.15	36	32	32	$d(Ir)+\pi(L+czdtc)$
Н-9	-7.17	10	81	9	π (L)
H-10	-7.49	11	18	71	π (czdtc)

Table S5 Frontier molecular orbital energies (eV) and compositions (%) in the ground state for complex 2b

МО	Energy		Contribution	Assignment	
		Ir	L	czdtc	_
L+10	-0.02	9	81	10	π* (L)
L+9	-0.04	0	3	97	$\pi^*(czdtc)$
L+8	-0.32	12	81	7	π* (L)
L+7	-0.58	1	99	0	π* (L)
L+6	-0.60	2	97	1	π* (L)
L+5	-0.96	1	1	98	$\pi^*(czdtc)$
L+4	-1.12	2	98	0	$\pi^*(L)$
L+3	-1.16	2	97	1	$\pi^*(L)$
L+2	-1.94	3	1	96	$\pi^*(czdtc)$
L+1	-2.52	3	96	1	π* (L)
L	-2.52	3	96	1	π* (L)
HOMO-LU	JMO energy	gap (3.55 eV)			
Н	-6.07	37	55	8	$d(Ir)+\pi(L)$
H-1	-6.24	18	8	74	π (czdtc)
H-2	-6.40	33	12	55	$d(Ir)+\pi(czdtc)$
Н-3	-6.47	3	1	96	π (czdtc)
H-4	-6.73	18	43	39	π (L+czdtc)
H-5	-6.81	1	70	29	π (L+czdtc)
Н-6	-6.95	4	84	12	π (L)
H - 7	-7.19	26	44	30	$d(Ir)+\pi(L+czdtc)$
H-8	-7.39	3	90	7	π (L)
Н-9	-7.43	21	49	30	$d(Ir)+\pi(L+czdtc)$
H-10	-7.50	2	2	96	π (czdtc)

Table S6 Frontier molecular orbital energies (eV) and compositions (%) in the ground state for complex 2c

	State	λ/Ε	f	Configuration	Assignment	Nature	Exptl. ^a
1 a	S_1	426/2.90	0.054	H→L (96%)	$d(Ir)+\pi(L)\rightarrow\pi^*(L)$	MLCT/ILCT	
	S_3	392/3.15	0.049	H-1→L (95%)	$d(Ir)+\pi(dipdtc)\rightarrow\pi^*(L)$	MLCT/LLCT	
	S_{19}	284/4.36	0.079	H-4→L+1 (72%)	$\pi(L) \rightarrow \pi^*(L)$	ILCT	
	S ₁₄	296/4.17	0.044	H-5→L (82%)	$d(Ir)+\pi(L+dipdtc)\rightarrow\pi^*(L)$	MLCT/LLCT/ILCT	
	S ₂₂	275/4.50	0.150	H-6→L (42%)	$\pi(L) \rightarrow \pi^*(L)$	ILCT	
				H-3→L+3 (35%)	π (L+dipdtc) $\rightarrow \pi^*$ (L)	LLCT/ILCT	
	S ₂₃	275/4.51	0.060	H-7→L (64%)	$\pi(L) \rightarrow \pi^*(L)$	ILCT	
	S ₂₄	274/4.51	0.118	H-3→L+3 (28%)	π (L+dipdtc) $\rightarrow \pi^*$ (L)	LLCT/ILCT	
				H-3→L+4 (23%)	π (L+dipdtc) $\rightarrow \pi^*$ (dipdtc)	LLCT/ILCT	
	S ₂₉	265/4.67	0.217	H-2→L+4 (82%)	$d(Ir)+\pi(dipdtc)\rightarrow\pi^*(dipdtc)$	MLCT/ILCT	
	S ₃₂	261/4.74	0.075	H→L+5 (39%)	$d(Ir) + \pi(L) \rightarrow \pi^*(L)$	MLCT/ILCT	
	S ₄₀	245/5.05	0.235	H-5→L+2 (62%)	$d(Ir)+\pi(L+dipdtc)\rightarrow\pi^*(L)$	MLCT/LLCT/ILCT	
	S ₄₄	239/5.17	0.063	H-4→L+3 (75%)	$\pi(L) \rightarrow \pi^*(L)$	ILCT	
	S ₅₈	224/5.52	0.466	H-3→L+5 (76%)	$\pi(L+dipdtc) \rightarrow \pi^*(L)$	LLCT/ILCT	
1b	\mathbf{S}_1	424/2.92	0.072	H→L (92%)	$d(Ir)+\pi(L)\rightarrow\pi^*(L)$	MLCT/ILCT	
	S_3	394/3.14	0.076	H-1→L (91%)	$d(Ir)+\pi(dipdtc)\rightarrow\pi^*(L)$	MLCT/LLCT	
	S_6	372/3.33	0.081	H-2→L+1 (92%)	$d(Ir)+\pi(dipdtc)\rightarrow\pi^*(L)$	MLCT/LLCT	
	S_7	352/3.51	0.053	H→L+2 (96%)	$d(Ir)+\pi(L)\rightarrow\pi^*(L)$	MLCT/ILCT	
	S_{10}	346/3.58	0.053	H-3→L+1 (92%)	$\pi(L+dipdtc) \rightarrow \pi^*(L)$	LLCT/ILCT	
	S ₄₃	267/4.63	0.053	H-9→L+1 (64%)	$\pi(L+dipdtc) \rightarrow \pi^*(L)$	LLCT/ILCT	
	S ₅₀	258/4.79	0.103	H-3→L+5 (80%)	$\pi(L+dipdtc) \rightarrow \pi^*(L)$	LLCT/ILCT	
1c	S_1	500/2.47	0.066	H→L(97%)	$d(Ir)+\pi(L)\rightarrow\pi^*(L)$	MLCT/ILCT	592
	S_3	450/2.75	0.103	H-1→L (96%)	$d(Ir)+\pi(L+dipdtc)\rightarrow\pi^*(L)$	MLCT/LLCT/ILCT	453
	S ₉	344/3.59	0.062	H-5→L (88%)	$\pi(L+dipdtc) \rightarrow \pi^*(L)$	LLCT/ILCT	
	S_{11}	326/3.80	0.287	H-4→L+1 (65%)	$\pi(L) \rightarrow \pi^*(L)$	ILCT	
	S_{14}	313/3.95	0.101	H→L+2 (61%)	$d(Ir)+\pi(L)\rightarrow\pi^*(L)$	MLCT/ILCT	
	S ₃₆	267/4.63	0.090	H-3→L+3 (53%)	$\pi(L+dipdtc) \rightarrow \pi^*(L)$	LLCT/ILCT	285
	S ₄₆	253/4.88	0.156	H-1→L+5 (55%)	$d(Ir)+\pi(L+dipdtc)\rightarrow\pi^*(L)$	MLCT/LLCT/ILCT	263
2a	\mathbf{S}_1	416/2.97	0.069	H→L (95%)	$d(Ir)+\pi(L)\rightarrow\pi^*(L)$	MLCT/ILCT	
	S_5	367/3.38	0.089	H-1→L (80%)	π (czdtc) $\rightarrow \pi^*$ (L)	LLCT	
	S_6	363/3.41	0.317	H-1→L+2 (56%)	π (czdtc) $\rightarrow \pi^*$ (czdtc)	ILCT	
	S_7	356/3.47	0.058	H-2→L+1 (50%)	$d(Ir)+\pi(czdtc)\rightarrow\pi^*(L)$	MLCT/LLCT	
	S_{10}	342/3.62	0.101	H-4→L+2 (73%)	π (L+czdtc) \rightarrow π *(czdtc)	LLCT/ILCT	
	S ₄₉	255/4.86	0.223	H-3→L+5 (43%)	π (czdtc) $\rightarrow \pi^*$ (czdtc)	ILCT	
	S_{56}	248/5.00	0.052	H-5→L+4 (44%)	$d(Ir)+\pi(L)\rightarrow\pi^*(L)$	MLCT/ILCT	
	S ₆₀	241/5.14	0.128	H-6→L+3 (46%)	$\pi(L) \rightarrow \pi^*(L)$	ILCT	
2b	\mathbf{S}_1	415/2.98	0.096	H→L (93%)	$d(Ir) + \pi(L) \rightarrow \pi^*(L)$	MLCT/ILCT	
	S_4	374/3.31	0.071	H-2→L (90%)	$d(Ir)+\pi(czdtc)\rightarrow\pi^*(L)$	MLCT/LLCT	
	S_8	357/3.47	0.064	H-1→L+1 (82%)	π (czdtc) $\rightarrow \pi^*$ (L)	LLCT	

Table S7 Selected calculated wavelength (nm) /energies (eV), oscillator strength (f), major contribution and transition characters for all studied complexes in CH₂Cl₂ media from TDDFT. H indicates HOMO, L indicates LUMO

	S_{11}	344/3.59	0.057	H→L+3 (94%)	$d(Ir) + \pi(L) \rightarrow \pi^*(L)$	MLCT/ILCT	
	S_{15}	335/3.69	0.089	H-4→L+1 (83%)	$\pi(L+czdtc) \rightarrow \pi^*(L)$	LLCT/ILCT	
	S ₃₂	291/4.26	0.096	H-4→L+4 (70%)	$\pi(L+czdtc) \rightarrow \pi^*(L)$	LLCT/ILCT	
	S ₄₆	275/4.50	0.051	H-2→L+5 (62%)	$d(Ir)+\pi(czdtc)\rightarrow\pi^*(L)$	MLCT/LLCT	
2c	\mathbf{S}_1	466/2.66	0.110	H→L+1 (84%)	$d(Ir) + \pi(L) \rightarrow \pi^*(L)$	MLCT/ILCT	532
				H→L (13%)	$d(Ir) + \pi(L) \rightarrow \pi^*(L)$	MLCT/ILCT	
	S_8	364/3.40	0.469	H-1→L+2 (80%)	π (czdtc) $\rightarrow \pi^*$ (czdtc)	ILCT	357
	S_{18}	331/3.74	0.052	H-6→L (80%)	$\pi(L) \rightarrow \pi^*(L)$	ILCT	
	S ₁₉	330/3.75	0.068	H-6→L+1 (83%)	$\pi(L) \rightarrow \pi^*(L)$	ILCT	
	S ₂₀	318/3.89	0.159	H-7→L (77%)	$d(Ir)+\pi(L+czdtc)\rightarrow\pi^*(L)$	MLCT/LLCT/ILCT	
	S ₂₅	303/4.08	0.047	H→L+3 (77%)	$d(Ir) + \pi(L) \rightarrow \pi^*(L)$	MLCT/ILCT	
	S ₃₇	279/4.44	0.352	H-1→L+4 (70%)	π (czdtc) $\rightarrow \pi^*$ (L)	LLCT	282
	S ₅₇	255/4.85	0.088	H-3→L+3 (64%)	π (czdtc) $\rightarrow \pi^*$ (L)	LLCT	

^aRef. 19

	МО	Energy/e V	Composition (%)			Assignment
			Ir	L	dipdtc/czdtc	
1a	L	-2.33	3	95	2	π*(L)
	Н	-5.61	34	54	12	$d(Ir)+\pi(L)$
	H-4	-7.07	2	86	12	$\pi(L)$
1b	L	-2.29	3	95	1	π* (L)
	Н	-5.60	32	58	10	$d(Ir)+\pi(L)$
1c	L	-2.71	3	96	1	π* (L)
	Н	-5.76	36	53	10	$d(Ir)+\pi(L)$
	H-4	-6.75	3	79	18	$\pi(L)$
2a	L	-2.41	3	95	2	π* (L)
	Н	-5.82	34	57	9	$d(Ir)+\pi(L)$
	H-5	-7.00	37	42	21	$d(Ir)+\pi(L+czdtc)$
2b	L	-2.38	3	95	2	π* (L)
	Н	-5.78	31	61	9	$d(Ir)+\pi(L)$
	H-5	-6.87	2	94	4	$\pi(L)$
2c	L	-2.72	4	95	2	π* (L)
	Н	-5.77	32	58	10	$d(Ir)+\pi(L)$
	H-4	-6.70	14	63	23	π (L+czdtc)

Table S8 Partial frontier molecular orbital composition (%) of all studied complexesin the triplet excited states. (H and L indicate HOMO and LUMO, respectively)

Table S9 Transitions responsible for the phosphorescent emissions for all studied complexes simulated in CH_2Cl_2 medium